THE BECKMAN CENTER FOR THE HISTORY OF CHEMISTRY

RALPH LANDAU

Transcript of an Interview
Conducted by
James J. Bohning
at
Listowel, Inc.
New York City
on
18 December 1990
THE BECKMAN CENTER FOR THE HISTORY OF CHEMISTRY
Oral History Program
RELEASE FORM

I hereby certify that I have been interviewed on tape on December 18, 1990 by James N. Bohnen, representing the Beckman Center for the History of Chemistry. It is my understanding that this tape recording will be transcribed, and that I will have the opportunity to review and correct the resulting transcript before it is made available for scholarly work by the Beckman Center. At that time I will also have the opportunity to request restrictions on access and reproduction of the interview, if I so desire.

If I should die or become incapacitated before I have reviewed and returned the transcript, my wife, Claire, shall have the right retained by me in the first paragraph of the letter and subject thereunto. I agree that all right, title, and interest in the tapes and transcript, including the literary rights and copyright, shall be transferred to the Beckman Center, which pledges to maintain the tapes and transcript and make them available in accordance with general policies for research and other scholarly purposes.

(Signature) Ralph Landau

(Date) Feb. 4, 1991

(Revised January 30, 1991)
THE BECKMAN CENTER FOR THE HISTORY OF CHEMISTRY
Oral History Program
RELEASE FORM

This document contains my understanding and agreement with the Beckman Center for the History of Chemistry with respect to my participation in a tape-recorded interview conducted by James J. Bohning on 18 December 1990. I have read the transcript supplied by the Beckman Center and returned it with my corrections and emendations.

1. The tapes and corrected transcript (collectively called the "Work") will be maintained by the Beckman Center and made available in accordance with general policies for research and other scholarly purposes.

2. I hereby grant, assign, and transfer to the Beckman Center all right, title, and interest in the Work, including the literary rights and the copyright, except that I shall retain the right to copy, use and publish the Work in part or in full until my death.

3. The manuscript may be read and the tape(s) heard by scholars approved by the Beckman Center subject to the restrictions listed below. The scholar pledges not to quote from, cite, or reproduce by any means this material except with the written permission of the Beckman Center.

4. I wish to place the following conditions that I have checked below upon the use of this interview. I understand that the Beckman Center will enforce my wishes until the time of my death, when any restrictions will be removed.

 a. ___ No restrictions for access.

 b. ___ My permission required to quote, cite, or reproduce.

 c. ___ My permission required for access to the entire document and all tapes.

 d. ___ After my death and during my widow's lifetime access shall only be permitted with her written approval. During the ten-year period following the death of the survivor of my wife and me there shall be no access other than as specifically permitted and contemplated by me or my widow.

This constitutes our entire and complete understanding.

(Signature)
Ralph Landau

(Date)
January 8, 1992
RALPH LANDAU

1916 Born in Philadelphia, Pennsylvania on 19 May

Education

1937 B.S., chemical engineering, University of Pennsylvania
1941 Sc.D., chemical engineering, Massachusetts Institute of Technology

Professional Experience

1941-1943 Process Development Engineer, M. W. Kellogg Company
1943-1945 Head, Chemical Department, Kellex Corporation
1945-1946 Process Development Engineer, M. W. Kellogg Company
1946-1963 Executive Vice President, Scientific Design Company, Inc.
1977-1987 Member, Board of Directors, Alcoa
1981-1982 Chairman, The Halcon SD Group, Inc.
1981-1990 Vice President, National Academy of Engineering
1983- Consulting Professor of Economics and of Chemical Engineering, Stanford University
1984- Research Fellow, Kennedy School, Harvard University

Honors

1972 National Academy of Engineering - elected
1972 Petroleum and Petrochemical Division Award, American Institute of Chemical Engineers
1973 Chemistry Industry Medal, Society of Chemical Industry, American Section
1977 Winthrop-Sears Award, Chemical Industry Association
1978 Newcomen Society Award
1981 Perkin Medal
1981 Chemical Pioneers Award, American Institute of Chemists
1981 D.Sc., honorary, Polytechnic University of New York
1982 Founders Award, American Institute of Chemical Engineers
1982 D.Sc., honorary, Clarkson University
1983 Designated Eminent Chemical Engineer, American Institute of Chemical Engineers
1983 D.Sc., honorary, Ohio State University
1985 National Medal of Technology
1987 John Fritz Medal
1988 Foreign Member, British Fellowship of Engineering
 (to become Royal Academy of Engineering)
ABSTRACT

Ralph Landau begins the interview with a description of his childhood and high school years in West Philadelphia. He then describes his undergraduate education in chemical engineering at the University of Pennsylvania, emphasizing a strong chemistry background. In recounting his graduate years at the Massachusetts Institute of Technology, he focuses particularly on the indispensable benefits of the Practice School as well as on the extremely high caliber of the chemical engineering program and faculty there. After telling of initial work at Kellogg, Landau summarizes his role with Kellex on the Manhattan Project. Next, he reviews the history of Scientific Design and its development into an international business, eventually to become Halcon, recapitulating significant discoveries and innovations. Finally, he describes his new career in the Economics Department of Stanford University, inspired by his frustration with the effects of macroeconomic policies on technological development. He concludes the interview with a brief account of his personal life and leisure activities.

INTERVIEWER

James J. Bohning, Assistant Director for Oral History at the Beckman Center, holds the B.S., M.S., and Ph.D. degrees in chemistry. He was a member of the chemistry faculty at Wilkes University from 1959 until 1990, where he served as chair of the Chemistry Department for sixteen years, and chair of the Earth and Environmental Sciences Department for three years. He was Chair of the Division of the History of Chemistry of the American Chemical Society in 1987, and has been associated with the development and management of the Center's oral history program since 1985.
TABLE OF CONTENTS

1 Childhood and Early Education
 Takes education very seriously from early age, working hard to graduate first to receive Penn scholarship. Grows up in Philadelphia, moving numerous times. Attends Overbrook High School with fine teachers. Facility in mathematics leads to interest in science and engineering.

4 University of Pennsylvania (Penn)

9 Massachusetts Institute of Technology (MIT)
 Receives Tau Beta Pi Fellowship to attend any university. MIT is "natural" choice due to unquestionable superiority in chemical engineering at the time. First experience away from home. Practice School offers tremendous practical experience. Very rigorous program and stimulating environment--the best and brightest. Completes thesis virtually unsupervised.

19 M. W. Kellogg Company
 Begins work with catalytic cracking and picks up other chemical projects that emerge. Asked to transfer to subsidiary, Kellex Corporation.

20 Kellex Corporation (Manhattan Project)
 Works with highly skilled engineers to design and run plant to produce highly concentrated uranium-235. Very little understanding of fission or the project as a whole. Works with Eyring, Urey, Groves, and Rehnberg. Actual diffusion plant controlled by Union Carbide which did not wish to involve engineers.

25 Scientific Design Company (SDC)
 Starts company with Rehnberg by proposing construction of monochloroacetic anhydride plant to former boss, then vice president of Stauffer. Although initial project never completed, both take advantage of contacts to expand worldwide. Work in England leads to further contacts in Europe and Japan.
Halcon International, Inc.
As SDC expands and petrochemical industry becomes saturated, Halcon created as holding company for SDC (for engineering licensing) as well as Catalytic Development Corporation (for manufacturing) and SD Plants (for construction). Pioneers in many chemical production processes, including ones for ethylene oxide, terephthalic acid, maleic anhydride, Oxirane, and acetic anhydride. Recession of early 1980s forces sellout. Receives several awards for research and industrial development.

Stanford University
Frustration with the macroeconomic atmosphere leads to new career in academe—in the Economics Department. Publishes a great deal and teaches seminar on relationship between economics and technological development. Contact with government officials.

Thoughts on Development of Chemical Engineering
Great opportunities of post-war era no longer available because majority of industry sustained by huge corporations. Practical experience in industry necessary to facilitate progress and innovation. The field has become so theoretical that the gap between academe and industry has widened, making the Practice School concept increasingly critical.

Leisure Activities
Enjoys swimming, opera, travel, wine, art, tapestries. Maintains numerous contacts throughout industry.

Notes

Index
NOTES

4. Hoyt C. Hottel, interview by James J. Bohning at the Massachusetts Institute of Technology, 17 November and 2 December 1985; Beckman Center for the History of Chemistry, Transcript #0025.

INDEX

A
Abbott, Thomas A., 22
Acetate, 34
Acetic acid process, 34
Acetic anhydride, 34
Adipic acid, 33
Alkylation, 36
Allied Chemical Company, 32, 35, 36
Alsace, France, 54
Aluminum chloride, 36
American Chemical Society, 34
American Cyanamid Company, 18
American Economic Association, 45
American Institute of Chemical Engineers (AIChE), 16, 50
Ammonia, 33, 34
Amundson, Neal, 17, 52
Anderson, Robert O. (Bob), 40
Aniline, 34
Aniline process, 33, 34
Antifreeze, 35
Arco Chemical Company, 30, 31, 33, 38-41, 43, 56
Austin Company, 25

B
Bangor, Maine, 11, 13, 19
Bartlesville, Oklahoma, 24
Bayer, 33
Bayreuth Festival, 54
Bechtel, 49
Beckman Center for the History of Chemistry, 29
Benedict, Manson, 22, 23
Benzene, 36
Bethlehem Steel Company, 11, 12
Birchenall, C. E., 21
Boeing, 25
Bombay, India, 29
Boord, Cecil E., 27
Boric acid oxidation of cyclohexane, 33, 37
Boskin, Michael, 41, 44-46
Boston, Massachusetts, 11, 13
Branch, C. Benson (Ben), 29, 31, 32, 54
Bromine, 37
Bromine-assisted oxidation, 33, 37
Brookings Institution, 56
Brookings Review, 45
Brooks, Benjamin T., 27
Brown, Tom, 31
Buffalo, New York, 11
Butanol, 38
C
C-12 nylon, 33
Cain, Gordon, 48, 49
Calcutta, India, 29
California Institute of Technology (Caltech)
 chemical engineering at, 5, 16
California, University of (Berkeley), 46, 56
Carbon monoxide-hydrogen, 34
Casey, William, 47
Catalytic ammonia oxidation, 33
Catalytic cracking, 18, 19, 52
Catalytic Development Corporation, 31
Cellulose acetate, 34
Central Intelligence Agency (CIA), 47
Chamberlain, Wilt, 2
Channelview, Texas, 39
Chemical Bank, 39
Chemical Engineering Progress, 48, 50
Chemical Industry Association, 49
Chemical Industry Medal, 42, 52
Chemical Plant From Process Selection to Commercial Operation,
 The, 49
Chem Systems, 49
Chevron Chemical Company, 13
Chicago, Illinois, 35
Chlorine, 12, 34, 43
Chlorinated derivatives, 35
Chlorinated hydrocarbon, 34
Chlorohydrin process, 43
Coal, 34
Cobalt bromide, 37
Colmar, France, 54
Columbia University, 22, 23, 46, 55, 56
Conant, James Bryant, 17
Cook, Paul, 48, 56
"Corporate Partnering," 38
Corrosion, 9, 15, 30
Council of Economic Advisers, 45
Cumene, 36
Cyclododecane, 33
Cyclohexane, 33, 37
Cyclohexanol, 37
Cyclohexanone, 38

D
David, Paul, 44, 46
Depression, the Great, 4
Detergents, 35
Diamond Alkali Company, 19
Diisopropylbenzenes, 36
Directors of Industrial Research, 34
Direct oxidation, 35
Dow Chemical Company, 13, 29, 32, 33, 43
Dow Foundation, Herbert H. and Grace A., 29

62
Dukakis, Michael, 45
du Pont de Nemours & Co., E. I., Inc., 7, 15, 19, 20, 32, 33

E
Eastern Manufacturing Company, 11
Economics and technology, 41, 44-46, 56
Electron diffraction, 9, 15
Elgin, Joseph C., 21
Ericson, Leif, 24
Essex Chemical Corporation, 49
Esso Oil Company, 25
Ethylene, 27
Ethylene oxide, 27, 33, 35-38
Evening Bulletin, The, 3
Everett, Washington, 24
Exxon Chemical Americas, 8, 51
Eyring, Henry, 22

F
Federal Bureau of Investigation (FBI), 21
Federal Reserve Bank, 39
Founders Award of the National Academy of Engineering, 52
Fluidized bed technology, 35
Fluorinated lubricating oils, 20, 24
Fluorine, 20, 24, 25
Fox, Sherwood N., 34

G
Gasoline, 38
Genentech, 57
General and the Bomb, The, 23
General Electric Company, 13, 14, 17
Gill, John D., 9
Gilliland, Edwin, 11, 14, 51
Granville, Maurice, 19
Groves, Leslie R., 23, 24
Gulf Oil, 19
Gunness, Robert C. (Bob), 19

H
Halcon International, Inc., 30-33, 38-45
Hanford, Washington, 21
Harvard University, 45, 46
Hatsopoulos, George, 46
Hercules Powder Company, 11, 12, 36
Herr, Donald T. (Don), 9
Hexafluoride, 24
Hiroshima, Japan, 21
Hitler, Adolph, 4
Homogeneous catalysis, 37
Hooker Chemical, 20
Hottel, Hoyt, 10, 12, 14, 51
Houston, Texas, 29, 54
Hustrulid, Andrew, 22
Hydrocarbons, 34, 38
Hydrofluoric acid, 24
Hydroformers, 18

I
Illinois, University of, 6, 17
Imperial Chemical Industries (ICI), 29, 32, 33, 38
Indian Institute of Chemical Engineers, 29
Industrial and Engineering Chemistry, 21, 22
Industrial Research Institute, 38
Institute of Medicine, 47
Intel, 56
Invention and Technology, 10
Iron Curtain, 31
Isobutane, 38
Isopropyl alcohol, 27

J
Jacobs, Robert B. (Bob), 22
Johnson, Clarence, 23
Johnson, Samuel, 30
Jorgenson, Dale, 45, 46
Joris, George G., 21, 22, 32

K
Keith, Doby, 19, 20, 50
Keith, P. C., 23
Kellex Corporation, 20, 24, 25, 35
Kellogg Company, M. W., 15, 18-20, 22, 25, 26, 31, 35, 50, 55
Kieschnick, Bill, 56
Kingsport, Tennessee, 34
Klein, Larry, 45
Koch, David H., 13
Koch Industries, 13
Krase, Norman W., 6, 7
Kravis, Irving B., 45
Kriebel, Robert H. (Bob), 49
Kurtz, Stewart S., Jr., 27

L
Lackawanna, New York, 11, 13
La Guardia, Fiorello Henry, 30
Lake Charles, Louisiana, 19
Landau, Ralph
childhood, 1, 2
classmates at the University of Pennsylvania, 8, 9
decision to attend MIT, 9, 10
decision to attend the University of Pennsylvania, 1-3
family, 1, 3, 27, 44, 55
high school education, 1-3
interest in science develops, 3
leisure activities, 53-55
Newcomen paper of, 31
research at MIT, 14, 15
university education, 1-14, 17, 18
Lawren, William, 23
Lefort, Theodore E., 35
Léger, Fernand, 55
Lewis, Warren K., 10, 11, 14, 51, 52, 56
Libby, Willard F. (Bill), 22
Links Club, 40
Liquid phase oxidation, 37, 38
Listowel, Inc., 55
Little, Arthur D., 51
Little Ferry, New Jersey, 27
Loctite, 49
London, England, 29, 31
Long Island, New York, 27, 36, 53
Los Alamos, New Mexico, 21
Los Angeles Lakers, 2
Low-pressure polyethylene process, 36
Lutz, John H., 8

M
Magnesium, 19
Maleic anhydride, 29, 33, 37
Manhattan, New York, 53
Manhattan Project, 20-24
Mansfield, Edwin (Ed), 45
Marshall Plan, 27
Massachusetts Institute of Technology (MIT)
 board of trustees, 44, 45
 chemical engineering at, 6, 7, 9-17, 50
 economics at, 44-46
 faculty, 6, 7, 14-16
 housing, 13, 14
 laboratory facilities, 14, 16
 Practice School (now David H. Koch School of Chemical
 Engineering Practice), 11-14, 16, 19, 51, 52
Matill, John, 12
McAdams, William H., 14
McAfee, Jerry, 19
Medal of Science, 52
Medal of Technology, 48, 52
Merck & Co., Inc., 33, 34
Merrimac Chemical Company, 13
Methanol, 34
Metropolitan Opera, 54
Midland, Michigan, 13
Miles, Christine, 37
Minnesota, University of, 17
Miró, Jean, 54
Mitsubishi, 33
Mitsui Petrochemical, 28, 34
Monochloroacetic acid, 30
Monochloroacetic anhydride, 26
Monsanto Chemical Company, 13, 29, 32-34, 38
Montecatini, 35
Montvale, New Jersey, 27
Moore, Gordon, 56
Mormon Church, 22
Mussolini, Benito, 4

N
Napa Valley, California, 56
National Academy of Engineering, 46, 47, 52
National Academy of Sciences, 47
National Bureau of Economic Research, 45
Natta, Giulio, 36
Nelson, Dick, 46, 56
Neo-Keynesians, 45
New Delhi, India, 29
New Brunswick, New Jersey, 11
Newton Square, Pennsylvania, 41
Nickel, 24
Nobel Prize, 22, 44
Nylon, 37, 43

O
Oak Ridge, Tennessee, 20-24, 26
Occidental Petroleum, 49
Office of Scientific Research and Development (OSRD), 17
Oldach, Carl S., 15, 18, 19
Olin Mathieson Chemical Corporation, 19
Opera News, 53
Overbrook High School, 2
Oxirane, 30, 31, 33, 34, 37, 39, 41-43, 49
Oxygen, 24

P
Para-cymene, 37
Para-diisopropylbenzene, 36, 37
Para-xylene, 36, 37
Paris, France, 29, 31
Parlin, New Jersey, 11
Pearl Harbor, 19
Péchiney & Cie, A. R., 37
Pennsylvania, University of (Penn)
board of trustees, 45, 47
chemical engineering at, 3-9
chemistry at, 4-6
English at, 6
economics at, 45
French at, 6
German at, 6
laboratory facilities, 7
mathematics at, 7, 8
philosophy at, 6, 8
physics at, 8, 9
Towne Scientific School, 5
Penobscot Chemical Fiber Company, 11, 12
Pentagon, 23
Perchloroethylene, 34, 35
Perkin Medal, 42, 52
Petrochemicals, 26, 28, 31, 36, 49
Petroleum refining, 18, 25, 26
Pickard, J. K., 22
Phenol, 33, 34
Philadelphia, Pennsylvania, 2, 7
Phillips Petroleum Company, 24
Phthalic anhydride, 35, 37
Plutonium, 21
Polite, L. John, Jr., 49
Polyethylene, 36, 43
Polystyrene, 43
Polyvinylchloride, 43
Port Washington, New York, 27
Princeton University, 22, 23
Principles of Chemical Engineering, 10
Propylene, 27, 36, 37
Propylene oxide, 33, 38, 43
Propylene oxide process, 31, 33, 52
Purdue University, 17

R
Rational Expectations School of economic thought, 45
Raychem, 48, 57
Reagan, Ronald W., 48
Reed, Charles E. (Charlie), 14
Regan, Donald, 47
Rehnberg, Harry, 24-32, 35
Republican Party, 47, 48
Research Management, 38
Rhône-Poulenc, 33
Rohatyn, Felix, 40
Roosevelt, Franklin Delano, 4
Rosen, R., 21
Rosenberg, Nathan, 10, 16, 44, 46
Ruttan, Vernon, 46

S
Saffer, Alfred, 36
St. John, Virgin Islands, 8
Samuelson, Paul, 44
San Francisco, California, 44
Schenectady, New York, 13
Schmalensee, Richard (Dick), 45
Schmerling, Louis, 27
Schuman, Seymour C. (Sy), 22
Scientific Design Company (SDC), 28-31, 33, 37, 43, 49
SD Plants, 31
Seattle, Washington, 25
Sematech, 46
Senatorial Trust, 47
Sherwin-Williams Company, The, 35
Sherwood, Thomas K., 6, 10, 14
Silver, 35
Sloan Foundation, 46, 47, 56
Smith, M. Ritchie, 8
Society of Chemical Industry, American Section, 42
Spencer, Bill, 46
Spitz, Peter H., 49, 50
Standard Oil Company of Indiana, 15, 19, 25, 27, 28, 31, 37, 41
Stanford University, 16, 41, 44-46, 49, 51, 56, 57
Stauffer Chemical Company, 26, 27, 30
Stephens, Charles M., 22
Styrene, 38
Sulfuric acid, 27
Sumitomo, 28
Summers, Larry, 45
Swanson, Bob, 57

T
Tau Beta Pi, 8-11, 15
Taylor, Hugh, 22
Taylor, John, 45
"Technology and Economics," 46
Technology Review, 12
Tennessee Eastman Corporation, 34
Terephthalic acid oxidation process, 27-29, 33, 36, 37
Terneuzen, The Netherlands, 33
Texaco, 19,
Texas Eastern, 40
Thomas and Hochwalt Laboratories, 32
Thomas, Charles Allen, 32
Thompson, W. I., 22
Torii, Yasuji, 28
Transactions of the Electrochemical Society, 15

U
Uhlig, Herbert, 15, 17
Union Carbide Corporation, 20, 25, 35, 36
United States Army Engineers Corps, 21
United States Congress, 47
United States Treasury, 36, 47
Uranium-235, 20
Uranium hexafluoride, 20
Uranium separation, 20
Urey, Harold, 22, 23
"Use of Electron Diffraction in Studying Corrosion, The," 9, 15
U. S. Steel, 34

V
Volcker, Paul A., 39, 40
Volstead Act, repeal of, 4

W
Wagner, Richard, 54
Walker, William H., 10, 51
Washington, D.C., 17, 20
Waterford, Connecticut, 13
Wei, Jimmy, 16
West Philadelphia High School, 2
Whitman, Walter G., 15, 17, 18
Wilkins, S. Jackson (Jack), 8
Wilson, Thomas P., 22
Winthrop-Sears Medal, 49
Wisconsin, University of, 17
World Bank, 45
World Telegram, 21
World Petroleum Congress of 1959, 37
World War I, 27
World War II, 18-21, 24-26, 35, 42, 43, 48
Wright, Gavin, 44

Z
Ziegler, Karl, 36
Zuhr, H. G., 22