ACKNOWLEDGEMENT

This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the Society of Chemical Industry (American Section). The series documents the personal perspectives of Perkin and the Chemical Industry Award recipients and records the human dimensions of the growth of the chemical sciences and chemical process industries during the twentieth century.

This project is made possible through the generosity of Society of Chemical Industry member companies.
CHEMICAL HERITAGE FOUNDATION
Oral History Program
RELEASE FORM

This document contains my understanding and agreement with Chemical Heritage Foundation with respect to my participation in a tape-recorded interview conducted by
Dr. James J. Bohning on January 10, 1995.
I have read the transcript supplied by Chemical Heritage Foundation and returned it with my corrections and emendations.

1. The tapes, corrected transcript, photographs, and memorabilia (collectively called the "Work") will be maintained by Chemical Heritage Foundation and made available in accordance with general policies for research and other scholarly purposes.

2. I hereby grant, assign, and transfer to Chemical Heritage Foundation all right, title, and interest in the Work, including the literary rights and the copyright, except that I shall retain the right to copy, use, and publish the Work in part or in full until my death.

3. The manuscript may be read and the tape(s) heard by scholars approved by Chemical Heritage Foundation subject to the restrictions listed below. The scholar pledges not to quote from, cite, or reproduce by any means this material except with the written permission of Chemical Heritage Foundation.

4. I wish to place the conditions that I have checked below upon the use of this interview. I understand that Chemical Heritage Foundation will enforce my wishes until the time of my death, when any restrictions will be removed.

 a. ✔ No restrictions for access.

 b. My permission required to quote, cite, or reproduce.

 c. My permission required for access to the entire document and all tapes.

This constitutes our entire and complete understanding.

(Signature) Dr. Frederick J. Karol

(Date) July 16, 1997

Rev. 3/21/97
This interview has been designated as **Free Access**.

One may view, quote from, cite, or reproduce the oral history with the permission of CHF.

Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below:

Frederick J. Karol, interview by James J. Bohning at Bound Brook, New Jersey, 10 January 1995 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0125).

The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
FREDERICK J. KAROL

1933 Born in Norton, Massachusetts, on 28 February

Education

1949 B.S., chemistry, Boston University
1962 Ph.D., organic chemistry, Massachusetts Institute of Technology

Professional Experience

Union Carbide Corporation
1956-1959 Chemist, Chemical and Plastics Group
1962-1965 Chemist, Chemical and Plastics Group
1965-1967 Project Scientist
1967-1969 Research Scientist
1969-1978 Group Leader, Chemical and Plastics Group
1978-1981 Research Associate and Group Supervisor
1981-1984 Corporate Fellow
1984- Senior Corporate Fellow

Honors

1982 Thomas Edison Patent Award, R&D Council of New Jersey
1987 Excellence in Catalysis Award, Catalysis Society of Metropolitan New York
1988 Chemical Pioneer Award, American Institute of Chemists
1989 Perkin Medal, Society of Chemical Industry
1989 Conley Award for Plastics/Engineering Technology, Society of Plastics Engineers
1990 International Award, Society of Plastics Engineers
1990 Collegium of Distinguished Alumni, Boston University
1991 Award for Creative Invention, American Chemical Society
1991 50th Anniversary Recognition Award, Society of Plastics Engineers (Newark)
1992 New Jersey Inventors Hall of Fame
1992 Outstanding Presentation Award, American Institute of Chemical Engineers Meeting, New Orleans
This interview with Frederick J. Karol begins with a short discussion of Karol’s family background and childhood near Boston, Massachusetts. Following an early interest in chemistry, Karol in 1946 enrolled at Boston University and graduated with a B.S. in chemistry before enlisting for two years of military service. He worked for Union Carbide from 1956 to 1959, began a family, and then entered a graduate program at MIT, studying statistical thermodynamics and organic chemistry under Gardner Swain and conducting thesis research on isotope effects. He continued catalysis research upon his return to Carbide in 1962, eventually developing a variety of proprietary catalysts for use with a high density polyethylene gas phase process. Karol’s contributions to the development of a gas phase process for making polyethylene products under low pressure helped to revolutionize the industry, as Union Carbide next developed this technology to commercial operations. The interview describes the worldwide licensing of the linear low density polyethylene process, its economic and environmental advantages, and the extension of this technology into synthetic rubbers; also discussed are the technical and management necessities for such innovative developments. Karol contributed to Carbide’s collaboration with Shell Chemical Company, which produced polypropylene, improved the catalytic system to make a wider spectrum of polypropylenes, and eventually led to process licensing. Here Karol discusses kinetic and analytic studies to understand the fundamental principles and mechanisms of polymerization; catalyst requirements and testing involving screening of reactions, analysis of property indicators, and use of pilot plants for testing; and his role in guiding development. After describing Karol’s education and subsequent research, the interview focuses on Union Carbide’s history and work environment, support for R&D and publishing, and Karol’s career progress and professional philosophies on management and scientific innovation. Karol describes the history of linear low density polyethylene, the development of both the Ziegler-Natta process and the UNIPOL process, and Union Carbide’s licenses and worldwide ventures. The interview closes with a discussion of the future of R&D and the chemical industry, and the significance of the Perkin Medal.
TABLE OF CONTENTS

1 Early Life and Education
 Childhood near Boston, Massachusetts. First exposure to chemistry in high school.
 Chemistry major at Boston University. Service during Korean War.

3 Career at Union Carbide
 Position with Union Carbide after discharge from service. Early involvement with
 Ziegler-Natta catalysts. Marriage and birth of first child. Graduate studies with
 Gardner Swain, studying statistical thermodynamics and organic chemistry at MIT.
 Return to Union Carbide and early catalysis work. Development of gas phase
 process for making high pressure polyethylene replacement products. Translation of
 gas phase process technology to commercial operations. Worldwide licensing of
 linear low density polyethylene process. Extension of technology into synthetic
 rubbers. Collaboration with Shell Chemical Company to produce gas phase
 polypropylene, and licensing of developed process. Kinetic and analytical studies to
 understand the fundamental principles and mechanisms of polymerization.
 Discussion of catalyst requirements and testing.

17 Recollection of College and Graduate Career
 Professors at Boston University. Papers published at MIT.

19 Discussion Union Carbide History and Professional Philosophies
 Publishing attitudes at Union Carbide and professional role as spokesman for
 technology. Progression through research ladder positions at Union Carbide.
 History of linear low density polyethylene development at Union Carbide, Phillips
 slurry process. Significance and history of UNIPOL process and worldwide
 licensing. Teamwork at Union Carbide and role of loners. Discussion of Perkin
 Medal address, “The Roots of Innovation.” Philosophies on overcoming setbacks
 and failures. Union Carbide’s development across career and strong support for
 R&D. Opinions on the future of R&D and the chemical industry.

42 Notes

43 Index
NOTES

1. Frederick J. Karol, “Reflections on Catalysis for Olefin Polymerization in Fluidized Bed Reactors” (ACS Award Address for Creative Invention, presented at the 201st ACS National Meeting, Atlanta, Georgia, 16 April 1991). See Chemical Heritage Foundation Oral History Research File #0125.

INDEX

A
Acetone, 6
Agglomeration, 6, 10, 14, 15
Alpha olefins, 6, 11
American Chemical Society, 11, 25, 30
Atochem Company, 31

B
Baekeland, Leo H., 25
Bakelite autoclave, 25
Banks, Robert L., 23, 24
Bartlesville, Oklahoma, 24
Bloomfield, New Jersey, 3
Boston University, 2, 3, 17, 18
Chemistry Department, 17
Boston, Massachusetts, 1
Bound Brook, New Jersey, 15
Branching, 11, 12
Butene, 6, 11, 12

C
Carbon, 32
Carrick, Wayne L., 18
Catalysis, 4, 5, 10, 13, 16, 18, 19, 37, 39
Charleston, West Virginia, 15, 21, 31
Chlorine, 32
Chromium, 6, 9, 12, 22, 23
Chromium oxide catalysts, 23
Chromocene catalysts, 19, 23
Conway, Richard, 2
Coordination polymerization, 13
Copolymerization, 6, 18
Cross-linking, 12

D
Depression, The, 1
Dow, Willard H., 27
E. I. du Pont de Nemours & Co., Inc., 25
E
EniChem, 31
EPDM [rubber], 10, 12
EPR [rubber], 10, 12, 16
Ethylene, 6, 14, 31
Ethylene cracker, 31
Ethylene glycol, 31
Extrusion, 32
Exxon Corporation, 9

F
Foster, --, 28
Free radical chemistry, 5

G
Gas phase processes, 4-7, 9, 11, 12, 23
Gas phase reactors, 7, 9, 12

H
Heterogeneous catalysts, 14
Hexane, 14
Hexene, 11, 12
Heyn, Arno, 17
High density polyethylene, 5, 6, 9, 11, 16, 21
High pressure polyethylene, 6, 7, 9, 10, 18, 28
Hogan, J. Paul, 23, 24
Homogeneous catalysts, 14
Houdry process, 25
Hydrogen, 23

J
Jones, Guilford, 17
Joyce, William, 9, 10, 26, 27, 40

K
Karol, Frederick J.
children, 3, 4
father, 1
mother, 1
sister, 1
wife, 3, 4
Kinsey Associates, 28
Korean War, 3
L
Lehigh University, 25
 Chandler Laboratory, 25
Lichtin, Norman, 17
Linear low density polyethylene, 10, 11, 16, 21-23
Low density polyethylene, 6, 9, 22
Lowell, Massachusetts, 1
Luchsinger, John, 7, 9, 26

M
Massachusetts Institute of Technology, 3, 4, 18
 Organic Chemistry Department, 3
 Physical Chemistry Department, 3
Mobil Oil Corporation, 9

N
National Historical Chemical Landmarks program, 25
National Medal of Technology, 10
Natta, --, 23
Newman, --, 17
North Sea, 24
Northeastern University, 2
Northumberland University, 25
 Priestley House, 25
Norton, Massachusetts, 1
Novisibirsk, Siberia, 39
Nylon, 25

O
Oxidation, 13

P
Perkin Medal, 17, 23, 25, 32, 41
Peterborough, New Hampshire, 3
Phillips Petroleum Company, 4, 22-24
Phillips slurry proces, 23
Polyethylene, 4-6, 9, 10-13, 16, 18, 21-23, 27, 28, 31, 32
Polymer chains, 7
Polymerization catalysis, 4
Polymerization, 12, 15
Polyolefin catalysis, 4
Polyolefins, 4, 5, 22, 25, 27
Polypropylene, 11, 12, 16
Praxair, Inc., 32
Proprietary catalyst technology, 4
Proprietary catalysts, 5
Propylene, 6

R
Rubber, 10, 12, 16

S
Sargent College, [Boston University], 3
Seadrift, Texas, 11
Seaford, Delaware, 25
Shell Chemical Company, 11
Silica, 12
Smithsonian Institution, 25
Solution and slurry processes, 5
Standard Oil Company of Indiana, 22
Styrene, 27
Sun Company, 25
Swain, C. Gardner, 3, 4

T
Titanium, 12, 22
Titanium-magnesium catalysts, 22
Tomfohrde, Tom, 27

U
Union Carbide Corporation, 3-16, 18-24, 26-33, 38-40
Chairman of the Board, 9
UNIPOL, 22, 25-33, 39

V
Vanadium, 12

W
World War II, 24, 27, 33

Z
Ziegler, --, 23
Ziegler-Natta catalysis, 3, 18, 22, 23