Transcript of an Interview
Conducted by
Leon Gortler
at
New Haven, Connecticut
on
21 March 2001
(With Subsequent Corrections and Additions)
CHEMICAL HERITAGE FOUNDATION
Oral History Program
FINAL RELEASE FORM

This document contains my understanding and agreement with Chemical Heritage Foundation with respect to my participation in a tape-recorded interview conducted by
Leon Gortler on March 21, 2001
I have read the transcript supplied by Chemical Heritage Foundation.

1. The tapes, corrected transcript, photographs, and memorabilia (collectively called the "Work") will be maintained by Chemical Heritage Foundation and made available in accordance with general policies for research and other scholarly purposes.

2. I hereby grant, assign, and transfer to Chemical Heritage Foundation all right, title, and interest in the Work, including the literary rights and the copyright, except that I shall retain the right to copy, use, and publish the Work in part or in full until my death, and that the interviewer shall retain the right to use the Work without the permission of Chemical Heritage Foundation.

3. The manuscript may be read and the tape(s) heard by scholars approved by Chemical Heritage Foundation subject to the restrictions listed below. The scholar pledges not to quote from, cite, or reproduce by any means this material except with the written permission of Chemical Heritage Foundation.

4. I wish to place the conditions that I have checked below upon the use of this interview. I understand that Chemical Heritage Foundation will enforce my wishes until the time of my death, when any restrictions will be removed.

Please check one:

a. _________ No restrictions for access.
 NOTE: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to obtain permission from Chemical Heritage Foundation, Philadelphia, PA.

b. ✔️ Semi-restricted access. (May view the Work. My permission required to quote, cite, or reproduce.)

c. _________ Restricted access. (My permission required to view the Work, quote, cite, or reproduce.)

This constitutes my entire and complete understanding.

(Signature) Jerome A. Berson
(Date) June 25, 2002

Revised 6/16/1999
Upon Jerome Berson’s death in 2017, this oral history was designated **Free Access**.

Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below:

The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
JEROME A. BERSON

1924 Born in Sanford, Florida, on 10 May

Education
1944 B.S., chemistry, City College of New York
1947 A.M., chemistry, Columbia University
1949 Ph.D., chemistry, Columbia University

Professional Experience
1944 Hoffmann-La Roche
1944-1946 U.S. Army

University of Southern California
1950-1953 Assistant Professor
1953-1958 Associate Professor
1958-1963 Professor
1963-1969 University of Wisconsin, Professor

Yale University
1969-1979 Professor
1979-1992 Irénée du Pont Professor
1992-1994 Sterling Professor
1994-present Sterling Professor Emeritus of Chemistry and Senior Research Scientist

Honors
1949 National Research Council Postdoctoral Fellowship, Harvard University (R.B. Woodward)
1963 California Section Award, American Chemical Society
1970 National Academy of Sciences
1971 American Academy of Arts and Sciences
1978 James Flack Norris Award in Physical Organic Chemistry, American Chemical Society
1980 U.S. Senior Scientist Award, Alexander von Humboldt Foundation
1985 William H. Nichols Medal, New York Section, American Chemical Society
1987 Roger Adams Award, American Chemical Society
1992 Arthur C. Cope Award, American Chemical Society
1998 Oesper Award, Cincinnati Section, American Chemical Society
2000 Literature Award of the German Chemical Industry Fund
ABSTRACT

Jerome A. Berson was born in Florida, the older of two children. His father taught Hebrew, and his mother was a milliner and housewife. As a result of the Depression his father struggled to earn a living, and when Berson was about ten the family moved to the Bronx, New York, and then to Long Island, New York. He graduated from high school at fifteen and then rode a Good Humor tricycle to earn some money before beginning City College of New York, chosen primarily for economic reasons. He finished at City a semester early and began working on penicillin at Hoffmann-LaRoche. From there he was drafted into the U.S. Army, in which he worked as a medic in India until the end of World War II. When he was demobilized he married Bella Zevitovsky, whom he had met when they were undergraduates.

Knowing he could not progress with only a bachelor's degree, Berson, with the help of the GI Bill, enrolled at Columbia University, where his Ph.D. mentor was William von Eggers Doering. Berson wanted to specialize in the chemistry of natural products, but during these early years Doering began to concentrate on physical organic chemistry. He urged Berson to consider academia as a career and was instrumental in arranging for a postdoctoral fellowship for him with R.B. Woodward at Harvard, where one could soak up the atmosphere of natural products chemistry. Berson credits Woodward and Doering with being two of his prime influences. Learning that jobs were found through the old-boy network, Berson wrote letters to many other universities, receiving only rejections until the University of Southern California (USC) offered him a position. Limited resources and manpower at USC caused him to shift his focus to physical organic chemistry. He attended lively, intense seminars at the University of California, Los Angeles, finding Saul Winstein an enormous influence and eventually “almost a friend.”

After thirteen years at USC Berson, by now a fully-fledged physical organic chemist, was recruited to the University of Wisconsin, where he stayed for “six of the happiest years of [his] life.” At Wisconsin he had funding, facilities, students, and colleagues he could only dream of at USC. His students and he worked hard on exciting, evolving problems; Berson calls it a “seminal time” for him. Thermal and carbocationic rearrangements, and the role of orbital symmetry in chemical reactions, were the focus of his laboratory during this period. While at Wisconsin, Berson had taken note of Erich Hückel’s work, which with Hund's Rule provided continuing themes in his thinking and research.

Yale University then recruited Berson. The personal reasons he chose to move to Yale included having family nearby and being close to New York City’s cultural attractions. Professionally, he noted that Wisconsin’s chemistry department, because of its sheer size, was unwieldy to administrate easily as a unit and hence had been divided into sub-units (organic, inorganic, physical, theoretical, et cetera). This fragmentation did not favor cross-disciplinary interactions. He believed that he had much yet to learn, and he found many teachers and colleagues at Yale and elsewhere. The Yale period included many new studies, especially on non-Kekulé molecules.

Throughout the interview Berson discusses his own research; the many important chemists he has worked in collaboration with and learned from, some at Yale and others elsewhere; some of his scientific controversies and their resolutions; the enormous changes permitted by technological advances; funding; the vagaries of research and importance of time and setting for progress. Berson explains his current work in the history and philosophy of
he concludes his interview with thoughts on the present and future of organic chemistry and physical organic chemistry.

INTERVIEWER

Leon Gortler is Professor of Chemistry Emeritus at Brooklyn College of the City University of New York. He holds AB and MS degrees from the University of Chicago and a Ph.D. from Harvard University where he worked with Paul D. Bartlett. He has long been interested in the history of chemistry, in particular the development of physical organic chemistry, and has conducted over fifty oral and videotaped interviews with major American chemists.
TABLE OF CONTENTS

1 Early Years

10 Graduate School

31 Early Academic Career

51 University of Wisconsin Years

73 Career at Yale University

82 Final Thoughts
 Present and future of organic and physical organic chemistry. Influence of funding and technology. Recreational activities.

89 Notes

95 Index
NOTES

39. J. C. Scaiano, V. Wintgens, A. Bedell, and J. A. Berson, "Absolute Rates of Dimerization and Cycloaddition of 3,4-Dimethylenefuran and 3,4-

42. (a) P. M. Lahti, A. R. Rossi, and J. A. Berson, "Ab Initio Study of 1,2,4,5-Tetramethylenebenzene, a Disjoint Non-Kekulé Molecule with a Possible Singlet Ground State," *Journal of the American Chemical Society* 107 (1985): 4362.

INDEX

A
Abbot Laboratories, 8
Accounts of Chemical Research, 57, 69
Acetylenic-Cope rearrangement, 58-60
Aldrich Chemical, 57
Alkaloids, 15, 24, 29, 36
Allentown, Pennsylvania, 4, 88
Angewandte Chemie, 64, 70
Aromaticity, 27, 45

B
Baldwin, John, 56
Bartlett, Paul D., 21, 28-30, 40-42
Barton, Derek, 29, 38
Battle of the Bulge, 11
Bauer, Wolfgang, 62
Benson Barrier, 59
Benson, Sidney, 54, 58-60, 74
Beringer, Marshall, 23
Bernstein, Richard, 20
Berson, Jerome A.
 daughter [Ruth], 13
 father [Joseph], 1, 3-5, 14
 mother [Rebecca], 4-5
 sister, 4, 88
 son [David], 13
 son [Jonathan], 13
 wife [Bella Zevitovsky Berson], 7, 12, 14
Bigeleisen equation, 56
Biradicals, 55, 57, 60-61, 63, 66-68, 74, 76, 79, 86
Bohr, Niels, 28
Borden, Weston, 66-68, 74, 76-77, 79
Brandeis University, 10
Brooklyn College, 6, 19
Brossi, Arnold, 38
Brown University, 13
Brown, Earlene, 38
Brown, Herbert C., 25, 39, 40, 72, 80
Brown, Ronald, 37
Buchi, George, 30
Burg, Anton, 35
Burgstahler, Al, 32
Bush, Linda, 77
Bushby, Richard, 62

C
California Institute of Technology [Caltech], 37-39
California, University of, at Los Angeles [UCLA], 26, 38-39, 51, 69
Caruso, Enrico, 4
Chen, Peter, 86
Chromatography, 16, 37, 50
City College of New York, 1, 3, 5-7, 9, 11, 18, 30
Cohen, Ted, 36, 38
Columbia University, 6, 12-17, 20-23, 25, 50
 Columbia Physicians and Surgeons [P&S], 7-8, 50
 Hickrill Chemical Research Foundation, 20, 23
Conant, James B., 7
Conroy, Harry, 32
Cope, Arthur C., 30, 56-60
Corey, Elias J., 42
Cram, Donald J., 25, 39
Curtin, David, 15, 19
Cyclohexane-1,4-diylic, 59-60
 Cyclohexane-1,4-diylic biradical, 59

D
Danishevsky, Sam, 10
Dauben, Hyp, 25
Davidson, Ernest, 6, 66-68, 76, 79
Dawson, Charles, 15
De Mayo, Paul, 69
Depression, The, 1, 3
DePuy, Charles, 19
Des Moines, Iowa, 34
Dewar, Michael, 43, 45
Dideuteriocyclopropane, 59
Diisohomogenol, 16, 18
3,4-dimethylenepyrrrole biradicals, 76
Dowd, Paul, 62-63
DuPont, E. I. de Nemours and Co., Inc., 81

E
Eidgenössische Technische Hochschule [ETH], 86
Elderfield, Robert C., 13, 15, 18
Ellison, Barney, 86
Emetine, 36
ESR spectroscopy, 60, 62
Evans, M. G., 45-46, 53
Evleth, Earl, 43-44

F
Fieser, Louis F., 24, 29
Florida State University, 67
Foote, Chris, 52, 75
Fort Lewis, Washington, 11
Fourier Transform Infrared Spectroscopy [FTIR], 67
Fukui, Kenichi, 44

G
Gajewski, Joe, 71
Gates, Marshall, 24, 29
Georgian, Flash, 29
GI Bill, 22
Goering, Harlan, 52
Gray, Al, 18
Greene, Fred, 30
Grubb, Phil, 41
Grunwald, Ernie, 20

H
Haines, Ruth, 18
Halford, Ralph, 16
Hammett, Louis P., 19-20, 25, 79
Hammond, George, 39
Harris, Ebert, 19
Harvard University, 13-14, 24, 29, 31, 55, 74
Heisenberg Hamiltonian, 66
Helinski, Ed, 67, 82
Heusler, H., 29
Hirschmann, Ralph, 85
Hoffmann, Roald, 43-47
Hoffmann-La Roche, 5, 8-10, 14, 16, 38, 69
Hong Kong, China, 14
Hornig, Lily, 10
Hückel, Erich, 25-28, 45-46, 63-64, 66-68, 79
Hughes, E. D., 31
Hund's Rule, 63-64, 66-68, 76-77, 79
α-hydroxyketone, 17
I
Ingold, Christopher, 80
Iowa State University, 33
Isoeugenol, 18
Isohomogenol, 18
Isotopic dilution, 50, 51

J
Johnson, William, 73
Jones, Bill, 38
Jones, Maitland, 53
Journal of Chemical Physics, 68
Journal of the American Chemical Society [JACS], 56, 70

K
Katonah Laboratory, 21, 23
Kekulé, August, 61, 64, 66
Ketol, 17
α-ketol, 17
Kharasch, Norman, 37
Kistiakowsky, George, 59
Kloetzel, Milton, 37
Knox, Larry, 21

L
Lahti, Paul, 77
LaMer, Victor, 20
Lausanne, Switzerland, 75
Levizt, Morty, 18
Life, 15
Long Beach High School, 1
Longuet-Higgins, Christopher, 68
Los Angeles, California, 13
Lynch, Geraldine, 18

M
Mack, Edward, 9
Manatt, Stan, 44
Massachusetts Institute of Technology [MIT], 5, 13, 30, 49
Mazur, Abraham, 6
McBride, Mike, 74
McDaniel, Dale, 62
McLemore, --, 29
McMillan, William G., 26
Meinwald, Jerry, 29, 33
Meislich, Herb, 18
Memory effects, 70-72
Mendel, Gregor, 46
Merck & Company, 8, 19, 34, 85
2-methyleneepentane-1,3-diy, 63
Molecular orbital theory, 25-27, 66
Müller, Alexander, 17-18
Müller, Eugen, 67
Mulliken, Robert, 26-27

N
National Institutes of Health [NIH], 37, 47-48
National Research Council [NRC], 23-24, 35
National Science Foundation [NSF], 37, 47-49
Nelson, George, 54, 70
New York City, New York, 1
New York University [NYU], 12
Non-classical bonding, 72
Noyce, Donald S., 15-16, 34, 39
Nuclear magnetic resonance [NMR], 31, 37, 51, 67, 74, 79, 87

O
Odum, Bob, 19
Optical purity, 50
Orbital symmetry theory, 27, 45, 61
Ottawa, Ontario, Canada, 60, 75
Ovchinnikov, Alexander, 66-67, 79
Oxy-Cope rearrangement, 53-54

P
Paris, University of, 44
Pauling, Linus C., 26-28, 33, 45-46
Penicillin, 8
Pennsylvania, University of, 85
Performance Pyrotechnics Associates, 13
Perkin-Elmer, 16
Perlman, David, 6
Pfizer, Inc., 8
Philadelphia, Pennsylvania, 13
Pollack, Peter, 19
Poonian, M. S., 71
Popper, Karl, 64, 66
Purdue University, 86
R
Rabinovitch, Benton Seymour, 59
Ray, Francis Earl, 7
Record of Chemical Progress, 70
Reiss, Howard, 20
Remanick, Allen, 42
Resonance theory, 6, 25, 27, 44-45
Reynolds, Jim, 71, 78
Reynolds-Warnhoff, Patricia, 71
Rice University, 7
Richter, George, 7
Rittenberg, David, 7, 50
Roberts, John D., 25-27, 39, 43, 47, 69, 87
Rossi, Angelo, 77
Roth, Wolfgang, 77-78
Rutgers University, 13

S
San Francisco, California, 13
San Francisco Museum of Modern Art, 13
Sanford, Florida, 1
Scaiano, J. C. [Tito], 75, 79
Schlag, Edward William, 59
Schoenheimer, Rudolph, 7, 50
Schrödinger equation, 27
Seeger, Dave, 82
Sheehan, John, 8
Sigmatropic rearrangement, 70
Sigmatropic rearrangements, 54, 69-70
Singh, Gurbaksh, 29
Singlet biradicals, 61, 76
Smith, Amos, 85
Sommer, Toby, 10
Sondheimer, Franz, 29
Squires, Bob, 86
St. John's College, 27
St. Louis, Missouri, 13
Stanford University, 73
Steroids, 17, 24, 29
Stork, Gilbert, 24-25, 29, 32-33, 37-38
Streitwieser, Andrew, 18, 25-26, 43
Stuyvesant High School, 1-2
Swain, C. Gardiner, 30, 49
Swidler, Ron, 36, 38
Syrkin, N., 46-47
T
Taub, David, 29
Taylor, Tuffy, 20
Tetramethylenebenzene [TMB], 75, 77-79
Tetramethyleneethane, 63, 68, 77
Thiele, Johannes, 10
Time, 15
Tishler, Max, 34
Trimethylenemethane, 62-63, 75
Triplet biradicals, 61
Tristram, Ed, 19
Tropone, 25
Tropylium ion, 21
Turner, Richard, 24, 29
Turro, Nick, 75

U
U. S. Air Force, 11
Office of Scientific Research [AFOSR], 47-49
U. S. Army, 11-12, 47
Research Office [ARO], 48
U. S. Navy, 37
Office of Naval Research [ONR], 47, 49
University of Southern California [USC], 29, 32, 35-38, 51-52, 54-55, 71, 74
Urban, Richard, 19
Urey, Harold, 50
Urushiol, 15

V
Valence bond theory, 27, 66
Van Tamelen, Eugene, 32, 73
Vietnam War, 48
Vilna, Lithuania, 4
Vogel, Pierre, 75, 78

W
Wagner-Meerwein rearrangements, 69
Wallau, W. Martin, 64
Walling, Cheves, 54
Warsaw, Poland, 4
Wayner, Dan, 60
Weill, Ruth, 21
Wenkert, Ernie, 29, 33
Westheimer, Frank, 29-30, 40, 77, 79
Wiberg, Ken, 18, 59, 74, 86
Willcott, Bob, 70
Willner, David, 71
Willstätter, Richard, 10
Wilson, Christopher, 69
Winstein, Saul, 25, 38, 40, 42, 47, 51, 69, 72, 80
Wisconsin, University of, 13-14, 41, 51-52, 54-55, 71, 73-74
Wolf, Al, 18
Woodward, Robert B., 23-25, 28-31, 33-38, 43-45, 47, 52, 61, 69
Woodward-Hoffmann orbital symmetry, 45
Worcester Polytechnic Institute, 1
World War II, 5, 49

Y
Yale University, 1, 13, 55, 73-75, 84, 88
Young, Richard, 18

Z
Zechmeister, Laszlo, 37
Zeiss, Harold, 23
Zewail, Ahmed H., 86
Zilm, Kurt, 67, 74-75, 79
Zimmerli Museum, 13
Zimmerman, Howard, 43