Browse Oral Histories Alphabetically

Foil A. Miller was involved early on with Pittcon and its two founding groups, the Spectroscopy Society of Pittsburgh and the Society of Analytical Chemists of Pittsburgh. In his preliminary interview Miller outlines some of the changes in the field of instrumentation that he has observed during the course of his career and reflects on some of the key individuals in instrument entrepreneurship. An interview conducted ten years later focuses on his personal biography. Inspired by a high school science teacher to study chemistry, he attended Hamline University, then went onto graduate school at Johns Hopkins. Miller spent much of his career in academia and research, taking positions at the National Research Council, the University of Minnesota, the Mellon Institute, and the Massachusetts Institute of Technology. 

Jeffery F. Miller grew up in Toledo, Ohio. As a child, he used his father's microscope to study bacteria and became interested in medicine. He attended Case Western Reserve University, where he studied biology and chemistry. Influenced by almost larger than life" Moselio Schaechter, Miller attended Tufts University School of Medicine. One of his rotations was with Michael Malamy, whom Miller calls the most rigorous scientist he has ever met. After a time at Stanford, Miller accepted an assistant professorship at University of California, Los Angeles, where he has developed Listeria monocytogenes as a bacterial probe and has been experimenting with viral vaccines. He discusses testing the lab's vaccines in humans, his competitors, innovative experimentation, and his study of bacterial pathogens' interaction with the immune system. "

Ronald A. Milligan grew up near Londonderry, Northern Ireland, becoming the first in his family to attend university. He had been interested in biology since childhood, and chose to study botany and bacteriology at the University of Leeds. After graduating, Milligan became a research assistant at the Nuffield Institute of Comparative Medicine at the London Zoo, then at the Medical Research Council, going to work on nuclear pore complex (NPC) in Nigel Unwin's lab. When Unwin was recruited to Stanford, Milligan followed. He spent three months in Germany, studying cryo-electron microscopy; his results allowed him to acquire independence as a researcher. Milligan talks about his NPC research, grantsmanship, and safe science," lab research, personnel, computers, and his work at Scripps Research Institute. "

Russell A. Mittermeier discusses the involvement and increasing support of Gordon E. Moore in Conservation International, especially his contribution to building the Center for Applied Biodiversity Science. He describes Moore as a good match with Conservation International given Moore's appreciation of its scientific approach and organizational management, leading the board of directors and transforming the organization at large. Lastly, Mittermeier reflects on how Moore's experience at Conservation International influenced the founding of the Gordon and Betty Moore Foundation and notes the Moores' influence in attracting Silicon Valley to the cause of conservation. 

Mario Molina studied chemical engineering at Universidad Nacional Autónoma de México, where he developed a chemical catalyst to blow polyurethane foam. He completed his master’s degree in polymer kinetics at the University of Freiburg. He completed his PhD and postdoctoral work in molecular dynamics at UC Berkeley. Molina moved to the UC Irvine, interested in industrial chemicals, chlorofluorocarbons and their movements in the atmosphere, discovering their affect on the ozone layer. At CalTech’s Jet Propulsion Laboratory, Molina did more hands-on experimentation on the Antarctic ozone hole. His work eventually led to the banning of CFC aerosols and ultimately the passing of the Montreal Protocol. Molina accepted a professorship at the Massachusetts Institute of Technology turning his focus turned to the more complicated chemistry on the surface of the planet. He won the first Nobel Prize for environmental science. Molina moved to UC San Diego to do research and open the Mario Molina Center for Strategic Studies on Energy and Environment in Mexico City. There he collaborates on research into particles in the lower atmosphere, working on air quality with Mexican government, and contributing to policy ideas about climate change.

Jeffery D. Molkentin was born in Milwaukee, Wisconsin and attended Marquette University, where he discovered an interest in medicine. While in medical school, he realized being a doctor did not appeal to him, but the science of medicine did. He entered the laboratory of Lee Ann Baxter Lowe at the Blood Center of Southeastern Wisconsin, and completed his doctoral degree with Bruce E. Markham at the Medical College of Wisconsin, where his research focused on transcriptional regulation of the alpha-myosin heavy chain gene in heart muscle. Now at the University of Cincinnati, he has pursued research in developmental biology on the molecular genetic events in heart and skeletal muscle growth. He discusses goals for his laboratory and future research on the heart and heart disease. 

This oral history with Gordon T. Moore and Jay T. Last focuses on the years 1956 and 1957, during which time Moore and Last worked at Shockley Semiconductor Laboratory and Fairchild Semiconductor was founded. This transcript is about the life of ideas and the people who brought those ideas to fruition; Moore and Last reflect on their experiences during these years while flipping through an old notebook that documented various aspects of the meetings they had over an eighteen month period. In order to fully understand this oral history, the reader must consult the Supplement to Gordon E. Moore and Jay T. Last Oral History, oral history number 0327S, which is also part of the Chemical Heritage Foundation's collection.

Carlos T. Moraes grew up in São Paulo, Brazil. When pursuing his mater's degree, he explored several career options, including a course at the Instituto de Investigaciones Bioquimicas Fundacion Campomar, where he worked under Armando J. Parodi. He eventually enrolled in a doctoral program at Columbia University, where he worked in the Eric A. Schon lab. He accepted a position at University of Miami to study mitochondrial diseases; he also has devised some related projects and possible applications of his DNA mutation studies. He discusses the advantages and disadvantages of being a principal investigator, competition and collaboration in science, thoughts about ethical issues, concerns about overpopulation, differences between American and Brazilian students, and thoughts about the use of animals in scientific research. 

In this interview, Herbert Morawetz traces his early life prior to leaving Czechoslovakia on the Nazi invasion and resettling in Canada, where he studied chemical engineering at the University of Toronto. He describes his introduction to industrial research work and his consequent Ph.D. study at Brooklyn Polytechnic Institute and late postdoctoral fellowship at Harvard Medical School. Morawetz also reflects on the future of polymer education and on international scientific collaboration. 

Paul Morgan discusses his upbringing in Maine, his undergraduate studies at the University of Maine, his graduate research at Ohio State University on naturally-occuring plant pigments, and his post-doctoral work on cellulose derivatives. He describes his Du Pont investigations of the synthesis of polymers, with particular emphasis on interfacial polycondensation. Incorporated into the interview are Morgan's reflections on scientific publication from an industrial setting. 

Thomas W. Muir grew up in Stranraer, Scotland. His grandfather fueled Muir's interest in mathematics, but large school classes offered little opportunity for teachers to foster his interests. He studied chemistry at University of Edinburgh, staying to pursue his PhD with Robert Ramage. He then undertook a postdoc with Stephen B. H. Kent at the Scripps Research Institute. Influenced by Mark J. Ginsberg's work on cellular interactions, Muir switched his research from FTV protease to chemical ligation and the integrin system, eventually becoming a senior research associate. He then accepted a position at Rockefeller University. His research focuses on chemical biology and the use of chimeras of synthetic peptides and recombinant proteins for in vitro biochemical pathway studies. Muir discusses teaching, administrative duties, publishing, patents, funding, and collaborations. 

Warren Muir received a bachelor’s degree in chemistry from Amherst College. He then moved to Northwestern University’s PhD program and was captured by the new societal awareness of environmental issues. Muir was recruited into the Council on Environmental Quality, whose initiatives included the Clean Water, Clean Air, and Safe Drinking Water Acts. Muir founded Hampshire Research Associates, which worked in a number of different areas, mostly pollution prevention. Through INFORM, Inc. Muir and David Sarokin made suggestions that led to the formation of the Toxic Release Inventory, which led to the Pollution Prevention Act. Muir moved on to a pollutant release and transfer register for Organization for Economic Co-operation and Development (OECD). Muir says that only a small fraction of uses of a wide range of chemicals causes problems; and that uses are dynamic. He believes that a centralized denoting of some chemicals as priority chemicals is not useful. He has five points for improvement:  choosing a use-based approach; gathering and tracking information; narrowing the definition of “confidential” in confidential business information; making producers responsible; and retaining and improving the new-chemical review.

William A. Muller was born in Manhattan, and as a child wanted to cure death" by studying medicine. He describes his undergraduate curriculum at Harvard and his experience purifying DNA under lab director Lynn C. Klotz. Feeling that clinical and research work should complement each other, Muller attended Rockefeller University-Cornell University Medical College M.D./Ph.D. program. He talks about his clinical training, his residency, and the practical nature of medical education. He studied endothelial cells in the Michael A. Gimbrone Jr. lab. His experimental methods included testing the validity of the data on slaughterhouse aortas. Although he was anxious at first about returning to his first graduate-school lab, Muller accepted a position at Rockefeller University. He now studies proteins that mediate monocyte binding and transmigration. "

Burnaby Munson entered Tarleton State College in central Texas and transferred to the University of Texas in Austin, Texas; physical chemistry was his favorite subject. He studied the reactions of acetylene while in Robbin Anderson's lab and completed his PhD there as well. Munson's first job was with Humble Oil in Baytown, Texas, where he worked on solution thermodynamics, extracting paraffins from aromatics. Humble was collegial, and training continued with a lecture series organized by Joe Franklin, who was a good friend and mentor to Munson. Franklin's small group of high-profile scientists developed the field of ion chemistry in mass spectrometry (MS). When Franklin left Humble for Rice University, the ion chemistry group began to break up. Frank Field took his high-pressure instrument to New Jersey; Frederick Lampe went to Pennsylvania State University; and Munson took a position at the University of Delaware. Munson was recruited to use Delaware's two instruments, an old time of flight (TOF) and a new CEC 21-110. As a replacement for Joe Franklin and Frank Field, Munson attended his first American Society of Testing and Materials (ASTM) meeting, which he says was a plum. "  He has since attended most of the American Society of Mass Spectrometry (ASMS) meetings, which subsumed ASTM, and he was president of the Society. 

James S. Murday was fascinated by solid-state physics and decided to enroll at Cornell University, where he was research assistant for Robert Cotts. Murday's interests expanded to include diffusion. At the time, chemistry's new pulse techniques provided greater impetus for NMR, and Murday exploited the growing interface between chemistry and physics. When he finished his PhD he was recruited by Henry Resing into the NMR lab at the Naval Research Laboratory (NRL). He joined the American Vacuum Society (AVS), which united chemistry, materials science, and electronics. When scanning and tunneling microscopes came along, clearly nanostructures were next. AVS officially became the first home of nanoscience. Murday influenced the Defense Advanced Research Projects Agency and the National Science Foundation, both of which had funding in abundance, to get involved in nano. Eventually the Nanometer Science and Engineering Technology (NSET), a subcommittee of the National Science and Technology Council (NSTC), was born and Murday was named Executive Secretary. Murday was also appointed Director of the National Nanotechnology Coordination Office (NNCO), set up to support NSET. 

For more information on Venkatesh Murthy, please visit the Pew Scholars in the Biomedical Sciences

For more information on this oral history, please contact the Director of the Center for Oral History.