Browse Oral Histories Alphabetically

For more information on Daniel Kalderon, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History. 

Mark P. Kamps grew up in New Jersey, where religion was important to family life, which taught him that science and religion can coexist. Interested in both chemistry and biology, he double-majored at Calvin College. At University of California, San Diego, he became interested in Bartholomew Sefton's work in avian retroviruses and worked in his lab. Kamps talks about his love of bench work, his relationship with Sefton, the need for students to design experiments, and ethics in science. Kamps accepted a postdoc in David Baltimore's lab at Massachusetts Institute of Technology, then took a position at UCSD. He discusses his discovery of E2A-Pbx1, and how it furthered his career, funding, ideal research environments, gender issues, students in the lab, and the importance of advancing science literacy.

Jean S. Kane was the first in her family to attend college. She began at Keuka College, intending to get a nursing degree, but she discovered chemistry and changed her major. She entered Mount Holyoke College and obtained a master’s degree in chemistry. Kane got a job at RCA, working on potassium tantalum niobate and solid-state crystals. After moving with her family to Virginia, Kane worked for the United States Geological Survey in the Branch of Analytical Chemistry, working on atomic absorption spectrometry and publishing about method development research. Kane took over the Geochemical Reference Sample Program at USGS, which attempted to categorize and standardize geological samples according to their chemical composition. Kane was recruited to the Standard Reference Materials Program at National Institute of Standards and Testing. She managed the certification of reference materials and standardized the certified values. Upon retirement, Kane remained on the editorial board of Geostandards and Geoanalytical Research, taking an active role in the leadership of the International Association of Geoanalysts. Kane’s contribution of greater precision in analysis and standardization of methods is widely acknowledged.

Joshua M. Kaplan was born in Boston, Massachusetts. He grew up in an academic family, and in high school began his first research experience with his father, studying in vitro red blood cell development. Kaplan studied biochemistry at Yale University, working in Charles A. Janeway's lab. At the University of California, San Francisco, he researched cancer-associated src protein with J. Michael Bishop and Harold E. Varmus, and earned his PhD After a postdoc at the Massachusetts Institute of Technology, an environment he found difficult but instructive, and a brief stay at Harvard, Kaplan became assistant professor at University of California, Berkeley. His current research focuses on mapping signal transduction in the simple nervous system of C. elegans, in an effort to understand the workings of more complex nervous systems.

Roger E. Karess cannot remember not being interested in science. He attended Yale University and Rockefeller University. After working in various research labs, Karess accepted a position as a principal investigator at the Centre de Génétique Moléculaire (CGM). He describes funding in France; the Centre National de la Recherche Scientifique (CNRS) and setting up a lab at CNRS; and his own funding. He later accepted positions in the Gerald Rubin lab at the Carnegie Institution of Washington, then a position in David Glover's lab at Imperial College of Science and Technology. Karess then applied for his first academic position at New York University, where he studied Leishmania. Karess moved his lab to the CGM in Paris, where he has been studying the rough-deal gene.

Isabella and Jerome Karle met while both were pursuing doctorates in physical chemistry under Professor Lawrence Brockway at the University of Michigan. After earning their degrees (and marrying), they worked on the Manhattan Project at the University of Chicago’s Metallurgical Laboratory. After a brief return to the University of Michigan, the Karle’s moved to the United States Naval Research Laboratory, where they focused on the development of X-ray crystallography. They worked together to develop a direct method for determining crystal structures, work for which Jerome Karle, with their colleague Herbert Hauptman, was awarded the Nobel Prize in Chemistry in 1985. Over the course of three interview sessions, the Karles discuss their childhoods, early education, undergraduate and graduate work, careers and collaborations.

Isabella and Jerome Karle met while both were pursuing doctorates in physical chemistry under Professor Lawrence Brockway at the University of Michigan. After earning their degrees (and marrying), they worked on the Manhattan Project at the University of Chicago’s Metallurgical Laboratory. After a brief return to the University of Michigan, the Karle’s moved to the United States Naval Research Laboratory, where they focused on the development of X-ray crystallography. They worked together to develop a direct method for determining crystal structures, work for which Jerome Karle, with their colleague Herbert Hauptman, was awarded the Nobel Prize in Chemistry in 1985. Over the course of three interview sessions, the Karles discuss their childhoods, early education, undergraduate and graduate work, careers and collaborations.

Frederick J. Karol discusses his early interest in chemistry, as well as his BSS in chemistry at Boston University and his two years of military service. Karol joined Union Carbide Corporation in 1956 , rising in the ranks to Senior Corporate Fellow, the position he holds presently; Karol took a brief hiatus to pursue a PhD in organic chemistry at Massachusetts Institute of Technology. Karol discusses his lengthy career at Union Carbide, including the development of the gas phase process for making high pressure polyethylene replacement products, linear low density polyethylene development, among other research developments, as well as Union Carbide's history and professional philosophies.

Gary Karpen was born in New York City. In junior high Karpen had an excellent biology teacher who fired his interest in that subject. Because Brandeis was strong in pre-med, he decided to apply for early acceptance. Soon, he decided to become a researcher, inspired by his childhood love of tinkering and solving puzzles. He next spent three years as a technician in Gerold Schubiger's lab at the University of Washington before crossing the bridge to the genetics department for graduate school. There, he worked in Larry Sandler's and Charles Laird's labs, transforming ribosomal genes into flies. After his postdoc at the Carnegie Institute of Washington, Karpen joined the Salk Institute for Biological Studies in La Jolla, California, where he has his own lab and teaches the occasional course. 

Martin Karplus was born in Vienna, Austria. During the Nazi occupation of Austria, the family moved first to Switzerland, then to Massachusetts. An early experiment using a microscope to study rotifers in drain water began his lifelong interest in observing nature. Karplus entered Harvard University to study physics and chemistry. For graduate school Karplus worked with Linus Pauling at Caltech. From California he went to Charles Coulson’s lab at the University of Oxford. His first faculty position was at University of Illinois, where he developed the Karplus equation. Karplus then went to Columbia’s IBM Watson Laboratory, where he and Richard Porter developed the Porter-Karplus surface. He took a position at Harvard and began the CHARMM program to study molecular dynamics simulations. He, Michael Levitt, and Arieh Warshel were awarded the Nobel Prize for the development of multiscale modeling for complex chemical systems. In his interview Karplus discusses his ability to visualize things; his love of birds; his gift for photography; his appreciation of European culture; and his extensive academic career. He says some of his work did not advance science until later; that it is important to avoid dead ends, that understanding the essential elements of a problem is crucial. He shares memories of the Nobel Prize ceremony and reception, as well as the impact the Prize has had on opportunities for himself and for others.

Donald L. Katz discusses his family background and his educational background, including his studies in chemical engineering at University of Michigan, which culminated in a PhD. While Katz initially joined Phillips Petroleum Company as a research engineer after his education, he was soon invited back to the University of Michigan for an academic appointment. Katz remained at Michigan for over fifty years, and he reflects on his research, including heat transfer investigations, and various aspects of chemical engineering education and the academic chemical engineering profession.

Raphael Katzen discusses his family and educational background, including his bachelor's degree in chemical engineering from Polytechnic Institute of Brooklyn. Katzen met Donald Othmer while an undergraduate, and Othmer was a significant mentor for Katzen, providing him with summer employment, taking him on off-campus consultations, and requesting permission for Katzen to obtain his master's degree in absentia while working at Northwood Chemical Company. Katzen also discusses his work on acid hydrolysis of wood in the production of ethanol, the creation of his own company, KATZEN International, Inc. , and his consulting and collaborative work.

Wilbur I. Kaye begins his interview by discussing his early interest in science and instrumentation and his education, which culminated in a PhD in chemistry at the University of Illinois. Kaye took a position at Tennessee Eastman Company after graduation and promptly set up a physics laboratory; Kaye discusses the instrumentation in his laboratory and his publications on gas chromatography. Kaye left Tennessee Eastman for Beckman Instruments, Inc., and reflects on his modifications to the DU spectrophotometer and other instrumentation at Beckman Instruments.

Paul Kebarle was born in Bulgaria. Kebarle escaped to Czechoslovakia during World War II, thence to Switzerland, where he studied at ETH as a major in chemical engineering. Kebarle then became a lab research assistant at University of British Columbia, where he obtained his PhD in chemistry under Allen Bryce, studying mass spectrometry.   Two years of postdoctoral work with Fred Lossing at the National Research Council produced many publications, some amplifying his thesis on butene-1. Kebarle was next hired as professor at the University of Alberta, where he continued his high rate of important publications, until his work “disappeared” because of the internalization in the discipline of chemistry. He worked on electrospray MS, publishing with Udo Verkerk what he considers his most important paper. Karl Kopecky is also interviewed, adding his personal recollections of Kebarle. He claims that Kebarle’s work is so important that it forms the core of the subject in all standard chemistry textbooks.

Dean H. Kedes' oral history begins with a discussion of his childhood and family life. Heavily influenced by his father, also a biomedical scientist, Kedes developed an interest in science early in life. He chose to attend Stanford University, pursuing a major in biology with the intention of applying to medical school. Coursework and research in the neurobiology laboratory of Eric Shooter, however, increased his interest in pursuing basic science. Kedes decided to undertake a joint MD/PhD program at Yale University. He joined the laboratory of Joan A. Steitz to study pre-mRNA splicing. Upon earning his MD/PhD, Kedes returned to Stanford University to undertake his clinical residency, though he experienced difficulty transitioning between laboratory research and clinical medicine. Kedes built upon his laboratory research with post-doctoral studies in Donald Ganem's laboratory at the University of California, San Francisco. There he developed his interests in the molecular biology of infectious diseases including Hepatitis B and Kaposi's Sarcoma-associated Herpes Virus (KSHV). He then accepted a position at the University of Virginia. During the interview Kedes reflects on the importance of balancing family life with laboratory work; creating a positive atmosphere within the laboratory; the importance of the Pew Biomedical Scholars Award award with respect to scientific funding and collaboration; and funding in the United States more broadly.

Jack Keene was born in Florida. His father worked in early computers for the RAND Corporation, and the family moved numerous times. Keene entered University of California, Los Angeles, transferring to University of California, Riverside and majoring in biology. He entered University of Washington for a PhD in microbiology and immunology. During his postdoc at the National Institutes of Health he learned classical sequencing, scientific discipline, and high standards. As an assistant professorship at Duke University, he worked on negative-strand RNA virology until he won the Pew Scholars award. Keene obtained a patent on an autoimmune test kit, a patent he licensed to Duke and on which he consults. Upon becoming a Pew Scholar, Keene discovered RNA recognition motif leading to work on binding specificity. Finding the multibinding of specific sequences has led to Keene’s post-transcription theory and in turn to a coordination theory of RNA operons.  Keene gives his opinions on innate genius versus luck, careerism versus professionalism, and personal responsibility.

Douglas R. Kellogg grew up in St. Paul, Minnesota, the second oldest of four children. He had an early interest in reading, and took classes with several influential teachers. Kellogg first chose the University of Minnesota for his undergraduate studies, but after a summer job in Alaska, he transferred to University of Wisconsin, Madison. He always had an interest in and affinity for biology; between undergraduate and graduate school, Kellogg worked as a lab technician on Drosophila genetics, influencing the path of his future research interests and studies. There was no doubt in his mind that he would become a biologist. Kellogg chose to attend the University of California, San Francisco to pursue his graduate degree, working in Bruce M. Alberts's laboratory studying pattern formation in Drosophila embryo cytoskeleton. After completing his doctoral degree, he decided to stay in San Francisco for a postdoctoral position with Andrew W. Murray and researched the role of mitotic cyclin in coordination of cell growth and cell division. After his postdoc, Kellogg took a position at the University of California, Santa Cruz, where his research has focused on cell-signaling biochemistry in the coordination, division, and regulation of cell growth. In the interview, he spoke at length about the makeup of his lab and how he manages and teaches in the lab. Kellogg also reflects upon the role of technology, critical inquiry, competition, collaborationand creativity in his research and in his science in general. The interview concludes with a discussion of the role of the scientist in educating the public about science, and how this factors in to setting his own and the national scientific agenda; he also offers advice for beginning scientists, and reflects on his favorite scientific papers.

Michael A. Kelly discusses his early interest in radio and television electronics, and his education, including a master's degree at Brooklyn Polytechnic Institute and a PhD in nuclear physics at University of California, Berkeley. Kelly joined the Hewlett-Packard Company after completion of his PhD as a research scientist and developed and refined the first ESCA instrumentation. Kelly also discusses his subsequent positions at Surface Science Laboratories, Kevex Corporation, Stanford University, and he reflects on the impact of ESCA and innovation during his career.

Robert Kennedy discusses his career in mechanical engineering, beginning with his education at Cornell University. After graduation, Kennedy took a position at Union Carbide Corporation, working first in the metallurgical industries and later in management, including a position as head of Linde Air Products Company. Kennedy discusses rebuilding the image of the chemical industry as part of the Chemical Manufacturers Association, education, and family.

Maurice J. Kernan was born in Dublin, Ireland. He loved natured and enjoyed bird watching on nearby Bull Island. He attended Trinity College, where he developed an interest in genetics and conducted summer research at the Boyce Thompson Institute at Cornell University. Kernan's project focused on nitrogen fixation done Rhizobium in the root nodules of legume plants, specifically trying to isolate the rec-A gene from that bacterium by complementation-testing transformed, rec-A deficient E. coli with bits of Rhizobium DNA. Kernan moved to the United States for graduate school at University of Wisconsin-Madison, joining Barry Ganetzky's Drosophila laboratory; his doctoral research led to a pair of Cell papers. After a postdoc, he accepted a faculty position at SUNY Stony Brook, where he is today.

Daniel S. Kessler was raised in Binghamton, New York and attended Cornell University for his undergraduate degree. Not until he worked in Stanley A. Zahler's bacterial genetics laboratory did he decide to become a scientist. He went on to Rockefeller University for graduate studies, where he worked with James Darnell on interferon signaling proteins (the STATs) identifying the activation of STATs in response to interferons, the STAT complex, and its regulation. Kessler then pursued postdoctoral research in developmental biology with Douglas A. Melton at Harvard University. Finally, he accepted a faculty position at University of Pennsylvania School of Medicine, where he works on control of mesoderm and endoderm germ layer formation, behavior of nodal signals during different stages of embryogenesis, and formation of the Spemann organizer.

Margaret C. Kielian became interested in science at an early age while growing up in Omaha, Nebraska. She studied microbiology at the University of Nebraska. She considered Stanford and Rockefeller Universities for graduate school and was encouraged to attend Rockefeller, where she studied fusion of phagocytic vacuoles with lysosomes in the lab of Zanvil A. Cohn lab. She became increasingly interested in molecular biology. After a stint as a visiting scientist working on Semliki Forest virus at the University of Helsinki, she continued her postdoc position at Yale University. Kielian's research focus shifted to conformational changes in the spike protein. She isolated the mutant virus fus-1, which turned out to be a useful pH probe for work on endocytosis. Vigorously recruited by Albert Einstein College of Medicine, Kielian set up her lab there with funding from National Institutes of Health, American Cancer Society, and Pew Foundation. Kielian discusses her lab's work on fusion in the SFV spike protein; the role of cholesterol in SFV infection; and the representation of women on the Einstein faculty.

Peter S. Kim was born in Atlanta, Georgia, but moved to Massachusetts, Brooklyn, and New Jersey as a child. He studied chemistry at Cornell, then went to Stanford for his PhD, where he worked in Robert "Buzz" Baldwin's lab on nuclear magnetic resonance. Another interest he developed was in catalytic antibodies. He won the third Whitehead fellowship granted. In his lab at the Whitehead he developed a peptide model of a protein-folding intermediate and worked on Leucine zippers and coiled coils with his postdocs and assistants. There, he was promoted first to assistant and then to associate member. Kim also became a professor at Massachusetts Institute of Technology and an associate investigator at the Howard Hughes; he remains in all three positions today. 

Seung K. Kim was born in Seoul, South Korea, the oldest of three boys. The family immigrated to the United States when Kim was about three. He attended Harvard University, where he found inspiration in a biochemistry class taught by Mark Ptashne, Tom Maniatis, and Douglas Melton. Kim talks about his college laboratory experience with Richard Goldstein; the process of writing; and his tutelage under James Rheinwald at the Dana-Farber Cancer Institute. After graduation, Kim enrolled in the MD/PhD program at Stanford University, and worked in Dale Kaiser's biochemistry laboratory studying cell signaling during development. He discusses his experiences in the MD/PhD program at Stanford; his interest in oncology; and his residency at Brigham and Women's Hospital. Kim accepted a fellowship at the Dana-Farber Cancer Institute, then did a postdoc on pancreas development in Douglas Melton's lab. He then took a position at Stanford University in developmental biology and set up his lab. Kim concludes his interview with lessons he has learned; his reasons for becoming a principal investigator; and the qualities of a good scientist.

Victor J. Kimm received bachelor’s and master’s degrees in civil (then sanitary) engineering.  After some time volunteering in Latin America and working with labor unions in DC, Kimm went to work at the Economic Development Administration. He obtained a senior post at the Environmental Protection Agency’s Office of Policy, Planning, and Evaluation and worked on the Safe Drinking Water Act, promoting the states’ efforts to qualify for delegation of implementation responsibilities. He became Deputy Assistant Administrator in the Office of Pesticides and Toxic Substances. During his ten years as Deputy, OPTS was responsible for implementing the Toxic Substances Control Act. Kimm discusses risk assessment management in TSCA and adds his own third aspect, risk communications. He praises OPPTS, its scientists, and its innovations. He laments the complexity of regulation that leads to inconsistent standards for chemical tolerances and results in an inability to foster the public interest. He hopes for more resources from Congress and for greater emphasis on alternatives to dangerous substances. 

Reatha Clark King was born in Pavo, Georgia, the second of three daughters. Her father was a sharecropper who never learned to read or write, and her mother, who went to school only through third grade, worked as a maid. King attended Clark College; chemistry was a required course for a home economics major, and King was immediately smitten with it. She resolved to become a research chemist, an ambition encouraged by Alfred Spriggs, head of the department, in whose lab she worked on gas chromatography. King won a Woodrow Wilson Fellowship was admitted to the University of Chicago, where she obtained her PhD in thermochemistry. Her first job was as research chemist at the National Bureau of Standards in Washington, DC, where she remained for five years. While there she worked on a project for the Advanced Research Projects Agency and published several papers. When her husband accepted a position at Nassau Community College in Garden City, Long Island, New York, King took an assistant professorship at York College of the City University of New York, progressing to associate dean of the college. From there she was chosen president of Metropolitan State University in Minneapolis and St. Paul, Minnesota, and then she moved on to General Mills, Inc. , as a vice president, and as president of the General Mills Foundation, a philanthropic organization.

Chalmer Kirkbride, influenced by his brother-in-law, a chemist for Sherwin-Williams, studied chemical engineering at the University of Michigan and initially worked for Standard Oil of Indiana before moving on to positions at Pan American Transport Company and Magnolia Petroleum Corporation, among others. Kirkbride was appointed as the first distinguished engineering professor at Texas A&M University, a position he held briefly before returning to industry. Kirkbride discusses his interest in environmental issues as well as recent activities as part of Kirkbride Associates.

Caroline F. Kisker grew up in West Berlin, West Germany, where she attended the John F. Kennedy German-American grammar school. After completing her Abitur, Kisker planned to study medicine, but due to the university placement lottery system she was not able to matriculate. In the interim, while working as a medical apprentice, she decided to pursue biochemistry at the Freie Universität in Berlin. She joined the large laboratory of Wolfram Saenger and had the opportunity to conduct laboratory work in Zürich, Switzerland and Frankfurt, Germany with Nobel Laureate Hartmut Michel. Her doctoral research centered on the determination of medically relevant tetracycline repressor protein, the results of which she published in Science . After completing their doctorates, Kisker and her husband pursued postdoctoral research in Douglas C. Rees's laboratory at the California Institute of Technology (Caltech). At Caltech, Kisker solved the sulfite oxidase structure and published it in Cell . Kisker then accepted a position as a faculty member at State University of New York, Stony Brook. In 2000 Kisker received the Pew Scholars Program in the Biomedical Sciences award and in 2006 she moved to the Rudolf Virchow Center at the University of Würzburg in Germany. She continues her research on structure-based drug design and DNA repair through the tools of structural biology. Kisker discusses the ways in which structural biology has changed throughout her career in response to new technologies and the ways in which funding affects her research and research choices.

Donald L. Klein grew up in Brooklyn, New York. With his childhood friend, Neil Wotherspoon, Klein developed an early passion for chemistry, electronics, and amateur radio, interests that would follow him throughout his life and career. After completing a degree under Roland Ward, Klein was recruited to work for Bell Laboratories, and began working on the production of semiconductors. His group was involved in developing etching techniques for semiconductors and methods to prevent different types of contamination in semiconductor production. While at Bell, Klein and his colleagues identified the problems with current FET models and processes; then came the idea of using a heavily doped polycrystalline silicon layer as the gate of an FET. The gate was to be supported on dual layers of a silicon nitride and silicon dioxide serving as the gate insulator. Using the FET as a model for integrated circuits, they fabricated and characterized hundreds of FET devices at high yield that exhibited close electrical tolerances. After a restructuring, Klein left Bell to work for IBM.

Gordon Kline discusses his lengthy career at the National Bureau of Standards and his work on applications of organic resins to aviation. Kline also expands on his other polymer-related activities, including his role in setting national and international standards for testing synthetic polymer products, his tenure as Technical Editor of Modern Plastics, and his time in Germany investigating German plastics laboratories.

For more information on Michael Klymkowsky, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History. 

William S. Knowles begins his oral history by discussing his early life during the Great Depression and his education, including time at Harvard University and Columbia University. Knowles spent the majority of his career at Monsanto Company, where he moved from studies of vanillin to research on steroid chemistry and L-Dopa, among other topics. Knowles discusses the many projects he worked on while at Monsanto, his 2001 Nobel Prize in Chemistry, and the challenges of being an industrial scientist.

Jane E. Koehler was born in Lincoln, Nebraska and graduated from Vassar College, Though she had first intended to pursue a PhD at the University of California, Berkeley, she soon decided to earn a master's degree instead and pursue a medical education. She attended George Washington University School of Medicine and Health Sciences, where she received an MD in 1984. After a postdoc there, Koehler began working at the University of California, San Francisco, as a Clinical Instructor of Medicine in the Infectious Diseases Department. She rose through the ranks to Associate Professor of Medicine in Residence in the Infectious Diseases Department. Her current research focuses on tracing the complex life cycle of Bartonella and its role in the frequent infection of immunocompromised patients.

Michael R. Koelle was raised in Seattle, Washington. His first laboratory experiences were during high school when he worked in the labs of Barbara L. and Stephen M. Schwartz at University of Washington. He attended University of Washington, then pursued his doctoral degree at Stanford University with David Hogness, working on hormonal controlled development and the ecdysone hormone receptor. Next, he undertook post-doctoral research on the genes involved in neural function and on the mechanics of neurotransmission with H. Robert Horvitz at the Massachusetts Institute of Technology. He then accepted a position at Yale University, focusing his research on G protein signaling and regulation. His discusses the varied duties of an academic scientist, views on public understandings of science, his current research, and more.

Andrew Koff was born and in New York and attended State University of New York, Stony Brook for political science. He worked as a technician in Peter Tegtmeyer's lab on SV40 large T-antigen. He decided to remain at Stony Brook for his graduate studies, then took a postdoc in James M. Roberts's laboratory at the Fred Hutchinson Cancer Center, studying cyclin E. He also collaborated with Joan Massague on cyclin E-CDK2 activity. Koff then accepted a position at the Memorial Sloan-Kettering Cancer Center, where he focuses on p27 interactions and regulation, developing mouse models mimicking p27 activity, cyclins in meiosis, and angiogenesis. He discusses grant writing, peer review, the importance of understanding the history of one's field, pressures of publication, and more.

For more information on Bruce Kohorn, please visit the Pew Scholars in the Biomedical Sciences

For more information on this oral history, please contact the Director of the Center for Oral History. 

Izaak Kolthoff begins his interview by discussing his early life in Holland, his education, and the factors influencing his decision to become an analytical chemist. Kolthoff details the effects of the McCarthy era on his career and accusations of Communist sympathies. Kolthoff ends the interview by discussing his research, including his work on crystal surfaces, and his participation in synthetic rubber research during World War II.

For more information on J. Michael Koomey, please visit the Pew Scholars in the Biomedical Sciences

For more information on this oral history, please contact the Director of the Center for Oral History. 

Adrian R. Krainer was born in Montevideo, Uruguay. Political unrest, anti-Semitism, and Zionism framed his teenage years. He attended Columbia University to study biochemistry, finding courses with James A. Lewis and Charles R. Cantor, and research with Catherine L. Squires quite stimulating. While at Harvard for graduate school, Krainer worked with Thomas P. Maniatis, developing a system for cell-free RNA splicing, which enabled them to elucidate the mechanisms of human pre-mRNA splicing. He took an independent fellow position at Cold Spring Harbor Laboratory, mentored by Richard J. Roberts, and began to characterize snRNP and protein components of the splicing machinery, before accepting a faculty position there in 1989.

For more information on James Krause, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History. 

Athan Kuliopulos was raised in North Reading, Massachusetts. He worked as a science-assistant while in junior high, and in high school, his biology teacher encouraged him to pursue independent biological research-Kuliopolos chose to study bacterial growth and natural products that inhibit such growth. He matriculated at Rensselaer Polytechnic Institute, where he had his first publication with Charles W. Boylen. He then began work in James Coward's laboratory, studying enzyme kinetics. Next, he joined the MD/PhD program at Johns Hopkins University, where he undertook doctoral research on ketosteroid isomerase in Albert S. Mildvan and Paul Talalay's laboratories. At Tufts University-New England Medical Center, where he is today, he has focused his research on protease activated receptors and pepducins involved in blood coagulation and cell signaling.

Samuel M. Kunes was born in Trenton, New Jersey. He was uninterested in school as a child, but a decision to drive across the country after high school graduation brought him to the town of Corvallis, Oregon, where he began to realize his academic potential. Kunes earned his BS at University of Oregon, where he discovered his interest in science and did research at Cold Spring Harbor Laboratory. Next, he attended graduate school at Massachusetts Institute of Technology, where he became interested in genetics. He took a postdoc in Hermann Stellar's lab at MIT, studying the nervous system development of Drosophila. Kunes is now a faculty member at Harvard. His research focuses on tracing the steps and control of axonal development in fruit flies.

For more information on Lawrence Kuo, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History. 

For more information on John Kuriyan, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History.

Makoto Kuro-O grew up in Tokyo, the younger of two children. At an early age Kuro-O decided he liked science. He attended the local elementary and junior high schools, and after graduating high school, contemplated becoming a doctor. He entered medical school at University of Tokyo. Kuro-O became interested in cardiology and describes his first basic laboratory experience. He did his PhD while spending at least half of his time seeing patients. He met Ryozo Nagai and joined his lab at Tokyo University. Kuro-O then accepted a position at the University of Texas Southwestern Medical Center. He talks about his move to the United States; setting up his laboratory; funding in general and specifically the impact of the Pew Scholars Program in the Biomedical Sciences on his work; his lab management style; his teaching responsibilities; and his research on the age-suppressor gene. The interview concludes with Kuro-O's comments on collaborations in science, serendipity in his work, gender and ethnic issues in science, his first impressions of the United States, and a comparison of science in Japan and the United States.

Stephanie Kwolek starts this interview by describing her family background. Her father's early death meant that her mother had to work to support Kwolek and her brother, who later became a chemical engineer. At the Carnegie Institute of Technology, Kwolek shifted her interests from medicine to chemistry. Deciding to enter industry, she accepted a position with the Rayon Department of DuPont at Buffalo. There, she started her career in polymer synthesis and worked with Izard, Wittbecker, and Morgan. When the laboratory moved to Wilmington, Kwolek was associated with the low ¬temperature polymerization program. In the interview, Kwolek then discusses the nylon rope trick, DuPont promotion policy, and liquid crystalline polymers. She concludes with her reflections on colleagues and DuPont consultants.

Stephanie Kwolek joined DuPont in 1946, the same year she earned her BS in chemistry at Carnegie-Mellon University. She spent much of her time working on polymers, including aliphatic and aromatic polyamides. At DuPont, she worked with 1,4-B and was able to get a high molecular weight polymer. It was eventually discovered that the polymer spun beautifully and was quite strong. This polymer became Kevlar. Kwolek describes industry competition, the testing and scale-up of Kevlar, and the problems of confidentiality. She further discusses the relationship between Kevlar and Paul Flory's theory of liquid polymer crystals.