Browse Oral Histories Alphabetically

Richard E. Honig was born in Göttingen, Germany, the eldest of three boys. He attended Robert College, an American college in Istanbul, from which he graduated with a bachelor of science degree in electrical engineering. In 1938, Honig moved to the United States to pursue a PhD in Physics at the Massachusetts Institute of Technology (MIT). Through a course in nuclear physics, he became interested in the nature of atoms, molecules and particularly isotopes, and eventually built his own mass spectrometer to study the effects of deuterium and cyclotron radiation on methane. His thesis on the nature of gas flow in that mass spectrometer was written under the direction of Clark Goodman. In 1946, Honig accepted a position at Socony-Vacuum Labs in Paulsboro, New Jersey, where he was able to continue the pursuit of his interest in the study of small hydrocarbon molecules with mass spectrometry. Honig joined the research staff at the Radio Corporation of America Laboratories in Princeton, New Jersey, in 1950, where he remained for the rest of his long career. His work began in Don North's group, studying materials used in hot cathodes. He designed and built a two-stage mass spectrometer, which led a few years later to the development of a secondary ion mass spectrometer (SIMS). He spent a year during the mid-1950's at the University of Brussels helping to start a mass spectrometry laboratory with Jean Drowart. Honig's career at RCA focused on materials characterization, particularly impurities in semiconductor materials, first with mass spectrometry and then later with a variety of surface analysis techniques when he became head of the newly formed Materials Characterization Research Group there in the mid-1960's. His long-time interest in cluster formation led to his measurement of elemental vapor pressures as a function of temperature and the evaluation of previously reported values for these quantities. Honig stepped down from his managerial position in 1982 and spent the next several years back in the laboratory helping to design and build a new mass spectrometer to study the organic materials on surfaces.

Masao Horiba begins his oral history by discussing his childhood, schooling, and life during World War II in Japan, where Horiba earned a BS in physics and established his own laboratory, Horiba Radio Laboratory (later incorporated as HORIBA, Ltd. ). Horiba's company built and improved upon a pH meter, among various other products, and, by the 1960s, began producing Hitachi, Ltd's analytical instrumentation, as well as a new analyzer for testing automobile emissions. HORIBA, Ltd. went public in 1971, and Horiba reflects on his still-thriving business and innovations in corporate management.

Jonathan M. Horowitz was born in Brooklyn, New York. By high school he had decided become a researcher in molecular biology, like Francis Crick. He attended a high school with no grades; he even designed his own courses. Hearing about its unstructured curriculum, he attended Brown University, but struggled to do well. For graduate school, Horowitz attended the University of Wisconsin, where he worked in Rex Risser's lab on mouse retroviruses. Shifting to oncogenes, he next joined Robert Weinberg's lab at the Whitehead Institute for Biomedical Research. In collaboration with Edward Harlow, Horowitz discovered Rb is an E1A-binding protein and mapped the E1A- binding region on Rb. He is now at North Carolina State College of Veterinary Medicine, where he finds much support for his research.

For more information on Jay Horton, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History. 

Gökhan S. Hotamisligil was born in the town of Pazar, on the Northern cost of Turkey. Growing up in small towns, he learned much from his family intellectually, socially, and culturally in his early years. He then attended a public boarding school where curriculum was intense but his science classes did not offer much experimentation experience. After college he attended Ankara University for his medical degree, after which he served in Eastern Turkey as a public physician where his view of society and medicine begun to transform. Subsequently, he returned to Ankara University where he specialized in pediatrics and became interested in human genetics. His wife's scholarship to the Shriver Center for Mental Retardation gave him the opportunity to continue his medical training and work in Xandra O. Breakefield's laboratory at Harvard Medical School. During these years, he was fascinated by basic science and metabolism decided to undertake graduate research at Harvard on adipocyte metabolism, obesity and insulin resistance which shaped his future career. He set up his own lab at Harvard School of Public Health and built a program to explore the interactions between metabolism and immunity and how these interactions contribute to chronic metabolic diseases such as obesity and diabetes. He discusses his early life story, the national scientific agenda, science and public policy, and his own current research.

Hoyt C. Hottel begins his interview by discussing his early education and interest in rubber chemistry, and how both factored in to his decision to attend Indiana University for chemistry and Massachusetts Institute of Technology for chemical engineering. Hottel discusses his substantial experience in World War II work on flamethrowers, incendiary bombs, and smoke obscuration and several jobs in industry, as well as his long tenure as a professor and director of the fuel and gas engineering program at MIT. Additionally, Hottel reflects on his extensive research on solar energy and gas turbine combustion.

Jonathon Howard was born in Sydney, Australia. Howard disliked school intensely-except for mathematics-often playing truant, until he transferred to International School, where he throve under the direction of William Eason. Howard went to Australian National University, obtaining his BSc in mathematics in 1979, then switched to physics and neurobiology for his PhD, which he received from Australian National University in 1983. He first took a postdoc at the University of Bristol in England, but soon moved to the University of California at San Francisco, where he worked in Albert James Hudspeth's lab. Howard became interested in vision and hearing, studying first photoreceptors and hair cells. He accepted an assistant professorship at the University of Washington, where he remains today.

Shi Huang was born in Dalian, China, during the Cultural Revolution. He remembers school being easy, and focused on memorizing political tracts, marching, and working in the fields. He went to Shanghai for college, where he studied genetic engineering and was selected to participate in the China-US Biochemistry Examination and Application program, a joint program between China and American professors. Huang studied English at the Guangzhou English Language Center, then joined John W. B. Hershey's laboratory at University of California, Davis; there he used a gel electrophoresis assay to study RNA protein interactions. After a postdoc at University of California, San Diego joined the Burnham Institute in La Jolla, California, where he continues his work on RIZ as a tumor suppressor gene.

For more information on Z. Josh Huang, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History. 

Tim Hughes grew up in Philadelphia, Pennsylvania, one of eight children; his father was a surgeon. Hughes took a degree in business from St. Francis University and started his own business. He now lives in Whitpain Township. Hughes first heard about the asbestos hazard when he bought a house in Ambler, and then became really aware of asbestos when a developer petitioned to build a seventeen-story high-rise on one of the unremediated piles. Hughes put together a flyer, and he and his wife distributed the flyers to residents of Ambler. Many people became concerned, and Citizens for a Better Ambler (CBA) was formed. The CBA paid for a feasibility study, and later the Borough Council vetoed the high-rise. The research persuaded the US Environmental Protection Agency (EPA) to address the site. Hughes thinks Ambler is safe from asbestos right now, but points out that the proposed high-rise location has not changed

Willis Humphreys describes his long tenure as Production Supervisor with Beckman Instruments, Incorporated. Humphreys worked on the electronics for many of the company's instruments, including the Helipot and the Model R pH meter. Humphreys also reflects on the intense World War II production of new instruments and the evolution of electronics technology.

Catherine T. Hunt grew up in Bronxville, New York, one of seven children. Her father was a chemist at Allied Chemical Company, and Katie often went to work with him and always had questions for him about why things are the way they are. A good chemistry teacher in high school only strengthened her determination to be a chemist. To that end she entered Smith College. During her summers she worked at Stauffer Chemical Company. She realized she needed a PhD, so she applied to the University of California system, choosing Davis. There she worked with Alan Balch and nuclear magnetic resonance (NMR). Hunt accepted a National Institutes of Health postdoctoral fellowship at Yale University, studying with Drs. Ian Armitage, Robert Shulman, and James Prestegard. When she began to interview for jobs she found Linda Benner and several others from Davis at Rohm and Haas; she also found a friendly and supportive atmosphere there, and took the job. She later became a process chemist and then lab manager of the Bridesburg plant. When downsized from Rohm and Haas in 1995 she moved back to Spring House in Analytical Research, ultimately becoming the director of the Analytical and Computational Competency Network. Persuaded to run for president of American Chemical Society (ACS), Hunt developed a platform emphasizing education in science, including legislators, the media, the public, and the next generation. After her year in office, Hunt returned to Rohm and Haas as the first Corporate Sustainability Director, as well as resuming her former role in Technology Partnerships. When Dow acquired Rohm and Haas on April 1, 2009, Hunt move into an expanded role in their External Technologies Group (ET); soon to be renamed: Innovation Sourcing and Sustainable Technologies.

Charles Hurd begins his oral history by discussing his early life and his later educational and professional experiences, including his PhD work in organic chemistry at Princeton University and his summer job in Thomas Edison's laboratory. Hurd was recruited to Northwestern University by Frank Whitmore and remained there for his entire career, while consulting for various companies. Hurd reflects on his research, teaching and creation of Molecular Models as a teaching tool, and the negative public perception of chemical industry.

J. Franklin Hyde discusses his university studies in chemistry, which culminated in a PhD in organic chemistry with Roger Adams and a postdoctoral at Harvard University. Hyde accepted a position at Corning Glass Works as a research chemist and later became the manager of the organic laboratory. Hyde later joined Dow Corning Corporation, where he continued management and research on equilibrium hydrolysis and bond rearrangement in siloxanes.