Browse Oral Histories Alphabetically

Gordon A. Cain received his undergraduate education at Louisiana State University during the Great Depression. After graduation, his first jobs were in the chemical industry, during which he applied for and received first patents. Cain enlisted during World War II as a captain and served in the Pacific with an Army heavy mortar company. After the war he worked in scientific intelligence in Germany. Returning to the United States, Cain shifted the direction of his career away from chemical engineering and into management, consulting and ownership of various chemical and high technology concerns (Cain was the head of Vista, Cain Chemical, and the Sterling Group). 

Vincent Calarco was an ambitious and hard-working student who enjoyed chemistry and had a firm desire to attend college. After graduation from New York High School, Calarco attended Polytechnic University of New York, receiving his B.S. in chemical engineering in 1963. While excelling in the intense environment at Polytechnic University, Calarco worked as a draftsman for Syska and Hennessey during the summers. In the summer of 1962, he accepted an internship at Proctor & Gamble's Port Ivory facility on Staten Island. From 1966 to 1968, Calarco served in the U. S. Army at the Ballistics Research Laboratory in Aberdeen, Maryland. In 1979, he became President of Uniroyal at the age of thirty-six. He set high-standards for employees at Uniroyal and enjoyed the challenges of his position. In 1985 Calarco left Uniroyal and became the CEO of Crompton & Knowles (Crompton Corporation). 

Andrew Camilli was born in Lima, Ohio. After a brief foray into computer science, he attended University of Michigan, Ann Arbor, to study biology and medical microbiology. There he had the opportunity to work with Robert B. Helling and Julian Adams. He attended Washington University for grad school, rotating through Daniel A. Portnoy's, William L. Goldwin's, and Roy Curtiss III's laboratories. When Portnoy left for University of Pennsylvania, Camilli followed to complete his doctoral work on the genes for virulence factors in Listeria monocytogenes. After a postdoc, he accepted a position at Tufts University School of Medicine, where he focused his lab on genetic expression in Vibrio cholerae and gene regulation in Streptococcus pneumonia. He discusses his changing roles in the laboratory, teaching responsibilities, management style, and more. 

Chavela M. Carr grew up near Indianapolis, Indiana in a large family. She attended Vanderbilt University, studying German, earning Phi Beta Kappa, and remaining involved in choir and musical theatre. Carr worked with Douglas R. Cavener on Drosophila  genetics, a research laboratory experience that differed in distinct ways from her general science laboratory courses. She attended MIT for graduate work in biology and soon joined the laboratory of Peter S. Kim (Pew Scholar Class of 1990), working on protein-protein interactions and coiled coils. In 1993 Carr published a Cell paper on the spring-loaded mechanism of conformational change in flu-virus--a paper which merited news releases in the New York Times and Washington Post . After completing her PhD, Carr moved to New Haven, Connecticut, to join Peter J. Novick's laboratory at Yale University. Upon receiving a position at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Carr began her research group and soon received the Pew Scholar in the Biomedical Science Award 

Michael C. Carroll began his career in banking, but was soon bored by the work. He entered Southern Methodist University as an undergraduate, continuing there for a master’s degree and becoming interested in immunology. He obtained his PhD from University of Texas Health Science Center, under advisor Donald Capra, where he began his interest in Complement C4. He moved to University of Oxford to work with Rodney Porter as a post-doctoral fellow where he cloned C4. He then accepted an appointment in Boston Children’s Hospital and is now a professor in Harvard Medical School.

Dennis A. Carson graduated from Stuyvesant High School in 1962, where he had devoted himself to the school's science-based curriculum. After receiving a BA in history from Haverford College, he earned in MD from Columbia University. He then worked for labs at the National Institute of Health, the University of California, San Diego, and the Scripps Clinic and Research Foundation. While at Scripps, Carson co-founded Vical a biotech company that develops DNA vaccines. He also founded other drug-development companies such as Triangle Pharmaceuticals, Dynamax Inc., and Salmedix. In 1990, he became director of UCSD's Sam and Rose Stein Institute for Research on Aging. He left in 2003 to head Moores UCSD Cancer Research Center, where he has two drugs in development. 

Richard W. Carthew was born in Toronto, Canada. He attended Queen's University for ecology and worked for Seward R. Brown. His thesis work was laboratory based, resulting in a publication on the thermodynamics of photosynthetic adaptation to photon fluence rate in the cyanophyte. He became a research technician for Jack F. Greenblatt at the Banting and Best Department of Medical Research and contributed to work isolating three proteins that bind to RNA polymerase II. He attended Massachusetts of Technology for graduate school, where he develop an interest in neurobiology and decided on a postdoctoral fellowship with Gerald M. Rubin at the University of California, Berkeley. From there he accepted a position at University of Pittsburgh, where he studied ras oncogene, which led to consulting work for the Chiron Corporation. 

Michael A. Caudy was born in Columbus, Ohio. When he was in high school, he worked as a technician in the veterinary pathology lab at Ohio State University, and later attended university there. He received a degree in English education and taught elementary and junior high school for a number of years while maintaining an interest in science, leading him to enter the biophysics graduate program at Ohio State. After a year, he transferred to the University of California, Berkeley, to David Bentley's lab, to study theoretical biophysics and neurobiology. He then accepted a position at Weill Cornell Medical College, where he works today, researching mammalian and Drosophila genetics. He discusses the college's atmosphere, pressures on medical schools, his research agenda, and his lab. 

Andrew C. Chan was born in Hong Kong, but his family emigrated to the United States when he was young. Encouraged by two teachers, he attended Northwestern University, entering with sophomore standing at age sixteen. He attributes his interest in research to his professor, Joseph Lambert, but also wanted to be a doctor, so he applied to the MD/PhD program at Washington University School of Medicine, where he did research on protein processing in John Atkinson's laboratory. After finishing his fellowship he moved up the ranks to attending physician at University of California, San Francisco. Today he is principal investigator at Washington University School of Medicine and attending physician at Barnes-Jewish Hospital. Chan discusses parental expectations, teaching, lab management, research, and more. 

Edwin R. Chapman grew up in Bellingham, Washington, the youngest of four children. From an early age Chapman was interested in science, especially chemistry. After graduating from the Bellingham public schools, he applied to his hometown college, Western Washington University. He discovered there the joys of academics in an organic chemistry class taught by Donald Pavia, whom he considers the best lecturer he has ever encountered; he credits Dr. Pavia, and other lecturers from this period, for setting the stage for graduate studies. After obtaining his bachelors degree, Chapman spent two years as a lab technician, designing HIV assays at Genetic Systems in Seattle. After this experience, he then went to graduate school. Fascinated by the workings of the brain, he decided to work with Dan Storm in the department of pharmacology. Wanting to continue his neuroscience studies, he accepted a Howard Hughes Medical Institute award for a postdoctoral fellowship at Yale in the lab of Reinhard Jahn. After four years Chapman accepted a position at the University of Wisconsin, Madison, where he is now a full professor. He discusses his funding history and explains how he set up and manages his lab. He goes on to talk about funding in general; writing grants; peer review system; his professional duties; his current research on synaptic transmission, membrane fusion, and neurotoxins; tenure; teaching and travel commitments; educating people in science. 

Sally Chapman's interest in science was fostered both by her tinkerer" father and by the nationwide interest in innovative science education that occurred after Sputnik. She attended Smith College and worked for the Quaker Chemical Corporation, where she assisted technicians and experienced basic, day-to-day activities in a lab. Realizing she was not ready for graduate school as she completed undergraduate work at Smith, Chapman became a computer programmer at Metropolitan Life Insurance Company in New York. After her stint in New York, she pursued graduate school, choosing Yale University, where she worked with Raymond Suplinskas on Hot Atom Chemistry. After two postdoctoral positions, Chapman accepted a position at Barnard College. During the interview Chapman talked about her work in the community of women in chemistry, which has included the Committee on the Advancement of Women Chemists (COACh), advising and mentoring students, and various other activities. "

Maureen J. Charron was the first in her family to go to college (she attended Queens College in New York City), first wanting to be a doctor, but soon finding she liked research better. She joined the lab of Corinne Michels, where she worked on maltose fermentation genes of yeast for beer; eventually she developed this into her diabetes research. Next, she took a postdoc at the Whitehead Institute for Biomedical Research, where she worked with Harvey Lodish, studying glucose transporters. She is now a professor at the Albert Einstein College of Medicine, an institution she chose based on its founding commitment not to discriminate against women, its diabetes lab, and location. She discusses difficulties women have in science, tenure, grant writing, competition and collaboration, and more. 

Gordon Chase grew up in London, England. He worked for Shell International Petroleum Company and then smaller companies, trading oil and petrochemical products, until he retired to travel. A visit to Kathmandu, Nepal, inspired an interest in pollution control, and he obtained a BSc (Hons) degree in environmental studies and diploma in pollution control from The Open University. Chase met his wife in Boston, Massachusetts, and the couple moved to Ambler, Pennsylvania, to be near her parents. Chase joined the BoRit community advisory group (CAG), is now chair of the Removal, Remediation, and Monitoring workgroup, and was later elected as co-chair of the CAG. Chase acknowledges a tension between private and public interests as represented by the differing opinions among members of the CAG, but he regards Ambler's reticence to confront its asbestos as a malaise" reflecting a general "malaise" in much of the United States on issues ranging from liquor sales to power lines to derelict buildings to infrastructure repairs. He feels that communication between the CAG and EPA is generally good. Chase has a positive view of Ambler in that its citizens fight hard for what they want. Chase believes that asbestos is now a problem of industrial blight as well as a health hazard. Chase has found some government agencies better than others, but acknowledges that they all have limitations and requirements prescribed by law. "

Cheng-Ming Chiang was born and raised in Taiwan. For undergrad, he joined what he considered the best department at National Taiwan University, Agricultural Chemistry. There, he learned biochemical and cell biological techniques in labs, including column chromatography, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and mammalian cell culture. After his military service, he spent one year as a lab technician studying human papillomavirus. When he matriculated at University of Rochester, he continued this research, specifically performing molecular biology mapping through RNA splicing of variants by retrovirus-mediated gene transfer in human papillomavirus type 11. His thesis won the best thesis award for the entire medical school. He is now at Case Western Reserve University, researching the biochemical aspects of human papillomavirus gene regulation. 

Arul M. Chinnaiyan was born near Cleveland, Ohio, but spent his first years in a suburb of Chicago, Illinois, the elder of two sons whose parents came from India. Chinnaiyan decided to attend the University of Michigan, working in Stephen Weiss's lab during summers and part time during the school year on proteases in neutrophils. He entered the Medical Scientist Training Program at University of Michigan to obtain an MD/PhD and eventually joined Vishva Dixit's lab to study apoptosis. From his research came the discovery of FADD, as well as twenty-one publications. After three years of research, Peter Ward persuaded him to complete his residency in clinical pathology at the University of Michigan. He established his lab and became interested in studying biomarkers for prostate cancer. He started a DNA microarray facility too. Chinnaiyan remained at Michigan as an assistant professor in pathology and urology and established the Michigan Center for Translational Pathology. 

Ken W. Y. Cho was born in Seoul, South Korea, but moved to Japan when he was five years old. His Korean heritage limited his career options, so he attended university in the US, receiving his B.A. in Chemistry from Grinnell College. Cho was forced to rapidly assimilate a new language and culture, spending entire nights just completing reading assignments. While completing his PhD at the University of Pennsylvania, he conducted research in Roberto Weinmann's lab at the Wistar Institute. During a postdoc at University of California, Los Angeles, Cho became interested in homeobox genes and their role in the development of embryos. Now a faculty member at University of California, Irvine, he researches the regulation of homeobox and goosecoid genes in the context of embryological development in vertebrates.

George M. Church was born on MacDill Air Force Base in Florida and lived near Tampa, Florida, until high school. He read a lot, especially science; when he was about ten he built an analog computer. For high school he was sent to Phillips Academy in Andover, Massachusetts, which he loved and where he throve. Dartmouth College, which was nearby, was beginning timeshare computing, and Church used their computer to teach himself more about computers. Church entered Duke University and finished in two years. He took a summer course in quantum physics at Massachusetts Institute of Technology and then began a job in Sung-Hou Kim's crystallography lab. There he "finally found the intersection of computers and biology." Also during these years he published five papers. Church entered Harvard University's PhD program, doing sequencing in Walter Gilbert's lab, working on polony sequences, and developing some of the earliest sequencers; he introduced multiplexed sequencing. Next he worked a short while at Biogen Research Corporation before taking a postdoc in Gail Martin's lab at the University of California, San Francisco. Needing a job in Boston, Church talked to a friend, Gary Ruvkun, who offered him an assistant professorship in genetics at Harvard Medical School. He has advanced through the ranks and is now Director of the Harvard-MIT Genome Technology Center and Director of the Lipper Center for Computational Genetics, as well as a full professor in genetics.

Stuart Churchill attended the University of Michigan, where he was quite active in the mathematics department as well as in chemical engineering. After working in industry for five years, at Shell Oil and Frontier Chemical, he returned to Michigan for graduate school. There he began both his extensive research on heat transfer, natural convection, and combustion, as well as his career in teaching. After earning his PhD and a position on Michigan's faculty, he began work on several military projects in the nuclear field. In addition, he served on the National Council of and as president of the American Institute of Chemical Engineers. After acquiring increasing administrative responsibilities as chairman of the department, he chose to move to the University of Pennsylvania to return his focus to research and teaching. 

W. H. Clark grew up in Big Stone Gap, Virginia, with an early interest in journalism. He decided to major in industrial engineering at North Carolina State University, where he became interested in technical selling. His first job was at Standard Oil of Ohio as a sales engineer, later moving to Nalco Chemical Company, where he spent the rest of his career. 

Don R. Clay graduated from Ohio State University, and after a brief stint at Monsanto Company, entered the US Army serving two years. After several years working in operations research, Clay began work in the Bureau of Drugs at the US Food and Drug Administration spending several years as Deputy Assistant Commissioner of Planning and Evaluation before leaving for the US Consumer Product Safety Commission’s Office of Program Planning and Evaluation. His work included being liaison among the EPA, OSHA, CPSC, and the FDA.  Frustrated with the bureaucracy at the FDA, Clay moved to the Office of Toxic Substances, where he became Acting Assistant Administrator of what is now the Office of Pesticides and Toxic Substances (OPTS). He now works in the private sector. Clay discusses the cultural differences among agencies; their different goals and processes; the differences between career staff and political appointees; and the difficulties of the regulatory process itself. He talks about what he perceives as successes and failures, focusing on asbestos regulation. 

Vincent J. Coates was too young to join the military at the start of World War II, so he got a job filing machine parts and began attending the Bridgeport Engineering Institute. He later applied the knowledge he had gained at the Institute on the Navy's Officer Candidate School exam, earning him the highest score in Connecticut. At the behest of his mother, Coates attended Yale University, majoring in mechanical engineering. After a short tour in the Navy, Coates took a job at Chance-Vought Aircraft. In 1948, he was hired at Perkin-Elmer Corporation; when John U. White left suddenly in 1949, the responsibility for their project, the Model 21, fell completely on Coates's shoulders. After the original Model 21 became a proven success, he began developing accessories for the instrument, such as the Prism Interchange Unit, to expand its potential market. Coates decided to leave Perkin-Elmer after the president decided to shut down Coates's field-emission scanning electron microscopes (FESEM) project. With Len Welter, he started the Coates & Welter Instrument Company to produce the world's first commercial FESEMs. Later, his Microspot Film-Thickness-Measurement Systems became essential for the manufacture of advanced microchips, and his company became extremely successful as a result. 

Mildred Cohn advanced through her early schooling rapidly, being prepared to enter college by age fourteen. She matriculated at Hunter College, though facing difficulties as a woman in the sciences. She moved on to graduate school at Columbia, where, after working for a short time at the National Advisory Committee for Aeronautics, she began her work with isotopes in Harold Urey's lab. She worked with du Vigneaud at George Washington and Cornell universities and at the Cori's lab at Washington University in St. Louis. Cohn spent much of her career at the University of Pennsylvania. 

Charles N. Cole attended the Massachusetts Institute of Technology (MIT) to pursue his degree. His interest in viruses led him to switch from Harvey F. Lodish's Laboratory to the laboratory of David Baltimore (Cole's research involved the polio virus and the role of defective interfering particles). This oral history also serves to complement CHF's oral history with David Baltimore . 

Michael D. Cole grew up in Ada, Ohio, the oldest of four children. Having excelled at math and physics in high school, he majored in physics at Ohio Northern University. He found biology more attractive as a career so he entered a PhD program at Johns Hopkins University, starting in Michael Beer's lab. As a postdoc in Ru Chih Huang's lab, Cole planned to study immunoglobulin but ended up working to characterize the myc gene instead. Cole accepted a position at St. Louis University, where he found the translocation and translocation breakpoint of myc, a major breakthrough in the study of cancer. He moved to Princeton Universityand has stayed with myc since, still seeking the binding site. He has two other related areas of interest:  finding cofactors necessary for activating tumor growth and studying growth factor receptors. 

Kathleen L. Collins grew up in Norwell, Massachusetts, and developed an early love for chemistry. Attending Wellesley College, Collins worked in Andrew C. Webb's molecular biology laboratory for her honor's thesis. She also worked on cloning interleukin-1 at Massachusetts Institute of Technology. Collins was accepted into the Medical Scientist Training Program at Johns Hopkins University, where she earned a joint MD/PhD degree. She did doctoral research on DNA synthesis in Thomas Kelly's molecular genetics laboratory, mentored by Mark Wold. Collins completed a postdoc at MIT in David Baltimore's lab, then accepted a position at University of Michigan, Ann Arbor. She discusses the impact of receiving the Pew award; gender issues in science; administrative duties; writing grants; advice to would-be scientists; publishing; teaching duties; and clinical responsibilities. 

Tucker Collins grew up in a suburb of Cleveland, Ohio. He won the Westinghouse Science Talent Search and was accepted at Amherst College, where he worked with Edward Leadbetter and Walter Godchaux. He spent two summers at Marine Biological Laboratory in Woods Hole, Massachusetts, where he attended Gerald Weissmann’s physiology course. Collins went into University of Rochester’s Medical Scientist Training Program program, obtaining both his MD and his PhD. Collins began work on vascular endothelial cells while in Jordan Pober’s pathology lab section at Brigham and Women’s Hospital in Boston, Massachusetts, while finishing his residency in pathology. National Heart, Lung, and Blood Institute funded his research into platelet-derived growth factor (PDGF). Collins set up his own lab with one of his numerous grants and began teaching at Harvard University. His lab continues investigations into cytokine adhesion and PDGF, hoping to discover how and why organisms form or malform.

Fred Conner, Jr., grew up in Northeast Philadelphia. He majored economics at Upsala College, Conner, served in the Marine Corps for twelve years, and worked as a defense contractor. Marriage brought him back to Pennsylvania. Conner became Director of Facilities and Economic Development Officer at Rosemont College and earned an MS in Community and Regional Planning (CRP) from Temple University. Conner first became aware of the asbestos-containing waste of the White Mountains and the BoRit site through an Open Space study he developed at Temple. He had been on the Planning Commission and Zoning Hearing Board of Whitpain Township and was now chair of the Township Board of Supervisors. Conner says that many of the original recommendations of the CRP study have been implemented successfully. Conner says the situation has been ameliorated somewhat, and while they wait for the results of the feasibility study, they have made some improvements to West Ambler’s general quality of life. Conner believes that complete removal of the asbestos-containing material from the site is probably not practicable. He suggests that other communities facing contamination problems should establish a multijurisdictional organization and convene a forum with a neutral facilitator to help them consider all views. Conner feels that there is no longer a health risk.

Charles E. Connor was born in Baltimore, Maryland. He grew up with relatives who had a science background and knew he wanted to be a scientist from a young age. He attended Loyola College in Maryland for undergrad and Vanderbilt University for his master's degree in pharmacology. After a stint in law school, he entered the neuroscience program at Johns Hopkins University, where he studied neural signaling for texture. He stayed at Hopkins for a postdoc with Gian F. Poggi and Michael Steinmetz, then took another postdoc at Washington University in St. Louis with David C. Van Essen. Connor returned to Hopkins for a faculty position in the neuroscience department, where his research has focused on understanding the neural code for object shape in the brain. 

Paul M. Cook was young when he developed an interest in chemistry, going so far as to build a laboratory in the basement of his parents' house. After graduating from high school in 1941, he attended the Massachusetts Institute of Technology, where he studied chemical engineering with Warren K. Lewis. In 1943, he put his education on hold and enlisted in the Army. While enlisted, he enrolled in the Army Specialized Training Program, through which he attended Stanford University for two terms, studying mechanical engineering. In 1946, Cook left the Army and worked for Submarine Signal in Boston; he then returned to MIT, where he completed his degree in 1947. After graduation, Cook started the Warren Wire Company with his older brother. A year later, Cook left the fledgling company to join the Stanford Research Institute as a chemical engineer. There he worked on a number of projects, including the growth of the algae Chlorella  and the potential uses of waste fission products. In 1951, Cook founded the Sequoia Process Corporation. Five years later, he left Sequoia to found Raychem Corporation, which opened in 1957. 

Gregory Cooke grew up in West Ambler, Pennsylvania. Cooke was a chaplain's assistant in the U. S. Army for eight years, before moving to North Hills, Pennsylvania. After he and his wife divorced Cooke lived in Ambler with his grandparents, during which time he obtained a social work degree from Villanova University. After meeting Edward Emmett, Cooke was hired to interview residents of Ambler for the REACH pilot program. He helped interview residents who lived near and played on the huge piles of waste without awareness of or concern about asbestos's dangers. The story was personal, as Cooke's own grandfather died of mesothelioma. Cooke thinks that the Environmental Protection Agency is taking too long to clean up the hazard and is not good at communicating with Ambler's citizens. He would like to have all the waste removed, not just capped, despite the many years of inconvenience that would cause. He has left the REACH project and is currently working on a University of Pennsylvania project studying the health of Ambler's residents. 

Sharon Cooke-Vargas grew up in Ambler, Pennsylvania. She says everyone knew about the asbestos, but because it took decades to manifest as a health problem, she was not concerned until the US Environmental Protection Agency ordered dumping of the asbestos-containing waste stopped. After a developer wanted to build a mixed-use high rise on one of the un-remediated piles, as well as witnessing the impact of the flooding in South and West, Cooke-Vargas joined the community advisory group (CAG) as an American Legion member. She feared the high-rise would finally displace the black communities that had been there for generations. Unfortunately, her experience has been that the CAG is ineffective, that the EPA does what it chooses. She feels that because the CAG meets outside the affected areas, those residents often do not attend meetings and are therefore less knowledgeable. Cooke-Vargas’ strongly-held opinion is that there is no good use for the BoRit Asbestos Area and the EPA should communicate better and accede to citizens’ wishes about remediation, not acting until its tests are all completed.

Lynn Cooley grew up in Portland, Connecticut, where her parents were scientists. She studied zoology at Connecticut College, then attended the University of Texas, where she studied biochemistry and worked in Kwan Wang's lab. After finishing her master's degree, she became a lab technician for Joanne Ravel, then transferred to Dieter Söll's lab at Yale University. He suggested she complete her PhD at the University of Texas while working in his lab. After finishing her degree, Cooley accepted a postdoc at the Carnegie Institution of Washington, where she began researching the regulation of expression in follicle cells, research she continued at Yale. Cooley discusses scientific issues, the impact of molecular techniques on developmental biology, improving the public's understanding of research, and trends in funding. 

Julia P. Cooper was born in Morristown, New Jersey. She began Emory University planning to be a geologist, but switched her major to biology. She began graduate school in pharmacology at the University of Colorado. Paul became her PhD advisor; in his lab she studied the biophysical properties of branched DNA. She accepted a postdoc at the National Institutes of Health and worked on chromatin structure in Robert Simpson’s lab. She later accepted another postdoc in Thomas Cech’s lab at the University of Colorado at Boulder, working on telomeres in fission yeast. After three years she left to work with Paul Nurse at the University of Cambridge in Cambridge, England, spending a year there before accepting a position at the University of Colorado at Denver. From there she moved to the London Research Institute, where she continues her research on telomeres and genomic stability.

Frank Costantini grew up in New York City. He was good in math and liked quantitative, objective subjects. He matriculated at Yale University, working on RNase Q in Sidney Altman's lab. For graduate school Costantini chose California Institute of Technology, entering Eric Davidson's lab to work on sea urchins. He went into Christopher Graham's lab at University of Oxford to focus on molecular biology, especially as applied to mammals. There Costantini worked on deriving embryonic carcinoma cell lines to go into the germ line to make genetically altered mice. At first this did not work, but Costantini showed the possibility of getting into the germ line by injecting DNA directly into the nucleus of an egg, rather than into the cytoplasm. At Columbia Costantini can do whatever he can get funding for. He likes to figure out what can be done with a new and interesting technique rather than try to fit the technique to a specific project. He still works mostly on mammalian development biology and gene regulation. He says that embryonic stem (ES) cells can now enable mutations in all genes, and that his best collaboration is with Elizabeth Robertson and her ES cells work. 

For more information on Jeffery Cox, please visit the Pew Scholars in the Biomedical Sciences

For more information on this oral history, please contact the Director of the Center for Oral History. 

Joseph Craft was born in Wilson County, North Carolina. He did not leave the farm area except for school, a mile away, until college, when he attended the University of North Carolina (UNC) in Chapel Hill. Craft chose UNC for medical school, where he decided he wanted to be an academic clinician. Wanting further training, During his three busy years of residency he considered switching to research. After a further year in general medicine he accepted a postdoc in rheumatology at Yale. While doing his postdoc he did his clinical work in his spare time. He began by studying Lyme disease, but switched to autoimmunity in general. Craft discusses his early publications; explains how the Pew grant helped him make the transition from clinic to lab; talks about his collaborations with John Hardin and Tsuneyo Mimori; details his funding; and talks about competition, tenure, a typical day at the lab, and his administrative duties. Craft concludes his interview with reflections on the interaction between his clinical practice and his science work. 

Ann Marie Craig was born in Ithaca, New York. By the time she entered university, she had fallen in love with the beauty and logic of science. She began classes in psychology, interested in how the brain works. She spent two summers working for the National Research Council of Canada. Her work was molecular neurobiology, leading her into cancer research. For her PhD, Craig chose David Denhardt's lab at the University of Western Ontario because she wanted to learn DNA cloning. After two postdocs, her interest shifted, this time to synapses, and she accepted a position at Washington University. Her research interests include molecular mechanisms underlying synapse formation and synaptic plasticity. She hopes in the future to initiate research on central neuron synapse assembly, modulation, and electrophysiology. 

Donald J. Cram grew up in Vermont, Florida, and New York, and attended Rollins College. He undertook his graduate work at the University of Nebraska with Norman Cromwell, which led him to work at Merck during World War II; he did his doctoral work at Harvard. In 1947 he took a position at the University of California, Los Angeles, and remained at the institution in the chemistry department for over thirty years. Cram's major research effort in the late 1970s on guest-host chemistry led to his sharing the Nobel Prize in 1987. 

Emmett D. Crawford was born in Meridian, Mississippi, but grew up in Laurinburg, North Carolina. Interested in space, Crawford decided to major in meteorology at North Carolina State University, but when he heard that chemical engineering was the hardest subject he switched majors, intrigued by the challenge. Crawford's professor, Richard Felder, said Crawford was the best problem solver he had ever seen, and Crawford managed an almost perfect record throughout college. For graduate school Crawford chose the University of Massachusetts at Amherst because their polymer science and engineering program was small and afforded personal attention. There he worked with Alan Lesser, a new professor, and published several papers on epoxy resins; from these publications he drew his dissertation. Wanting to use his PhD in industry, Crawford chose a job at Eastman Chemical Company in Kingsport, Tennessee. At Eastman TMCD (2,2,4,4-tetramethyl-1,3-cyclobutanediol) had been studied from a chemical perspective many times over the years, but Crawford brought his experience with materials science to studying it again and developed a new theory that produced a plastic combining durability with pliability, a theory that eventually was confirmed by small-scale testing. Supported by some of the management Crawford was able to bring what was given the name Tritan to commercial production. Crawford won the Society of Chemical Industry Gordon E. Moore Medal for developing Tritan. 

Carlos A. Cuadra, a pioneer in the field of information sciences, continued his education while serving in the Navy during World War II. He did his undergraduate and graduate work in psychology at the University of California, Berkeley and wrote his dissertation on the Minnesota Multiphasic Personality Inventory. He began to work for RAND in the System Development Division, which split off and became System Development Corporation (SDC). He learned about computers and programming while he was working on intelligence project 466L for the Air Force and was made head of the Intelligence Systems Branch of SDC, working on various information systems such as MEDLARS II, MEDLINE, ORBIT, and ELHILL. He started the Annual Review of Information Science and Technology. Cuadra briefly worked as a consultant for the National Academy of Science's Committee on Scientific and Technical Information (COSATI), and was later appointed to the National Commission on Libraries and Information Science (NCLIS). Within SDC, Cuadra created SDC Search Service, one of the first online retrieval services. 

Susan Curry moved to Ambler, Pennsylvania in 1998. Wanting to live sustainably, she joined Alliance for a Sustainable Future, took a master's degree in environmental studies and psychology, and joined the newly founded Ambler Environmental Advisory Council (EAC). Curry moved to Ambler just as a five-year review by the U. S. Environmental Protection Agency (EPA) of the remediated asbestos piles found everything all right. Curry talks about her role in the establishment of the community advisory group (CAG) when the EPA listed the BoRit Superfund site on the National Priorities List, and she explains the structure and workings of the CAG. She had belonged to the Removal and Remedial Monitoring workgroup of the CAG and thinks that they should be requiring the EPA to test the ground under the pond, which is now having the water removed and cleaned, for all kinds of toxic substances. She praises Salvatore Boccuti's aerial photos of the site. She agrees that the town is vibrant; in fact, parking is a problem now. All of this is a result of good community efforts and strong local leaders, like the current Borough Manager. She believes asbestos is not a concern for most people. Curry stresses the importance of establishing a CAG, getting aerial photos, demanding quarterly tours of the remediation. Communities should research previous Superfund sites. Be sure the EPA does not define too small an area for the site boundaries. Make use of Technical Assistance Services for Communities (TASC) for gathering and interpreting information. 

Jason G. Cyster was born in Western Australia. In high school, he obtained the highest aggregate score on Australia's Tertiary exams in his state, receiving the Beazley Award. He decided to study biology based upon his childhood interests in animals and the caliber of lecturers at Western Australia University. By his third year, he became interested in immunology and began working with Wayne R. Thomas. After receiving a Commonwealth Overseas Studentship, Cyster attended Oxford University, where he worked with Alan F. Williams characterizing the CD43 molecule and collaborated with Paul C. Driscoll and Ian Campbell on a structural analysis of the T lymphocyte CD2 antigen. After a postdoc at Stanford, he accepted a position at the University of California, San Francisco, where he is today.