Browse Oral Histories Alphabetically

Alison E. M. Adams attended Trinity College, Dublin, where she studied genetics and spent a semester in John Pringle’s lab at the University of Michigan. Next, she returned to the United States and to Pringle’s lab, researching Saccharomyces cerevisiae. After finishing her PhD she ended up at David Botstein’s lab at Massachusetts Institute of Technology, then went with him to Genentech, where she discovered that fimbrim isoforms can compensate for Sac6. This work inspired her research at the University of Arizona, where she established her own lab and shifted toward biochemistry. Adams plans to take a sabbatical to pursue research for the Imperial Cancer Research Fund and teach in India. She discusses her role in science, scientific cooperation, and perspective on the future of mankind.

Robert Adams grew up in Gladwyne, Pennsylvania. As a student at the Ambler campus of Temple University with a major in urban studies and environmental science, he became familiar with the “White Mountains” of Ambler, the piles of asbestos-containing waste material. His first official interaction with the area was as land manager for the Wissahickon Valley Watershed Area (WVWA). By the time Adams began working for WVWA the U.S. Environmental Protection Agency (EPA) had completed the capping of the White Mountains. The BoRit site had been mostly ignored until a developer wanted to build a seventeen-story high-rise. The WVWA, hoping to buy a reservoir located in the middle of the site, was concerned about proper remediation. Adams was elected co-chair of the CAG which helped BoRit to get added to the EPA’s Superfund National Priorities List, and a remediation study is ongoing. He hopes that the BoRit site, which is now fenced off, can eventually be more accessible to the residents. He says that other communities might take Ambler’s experience as a call to pay attention to their environments.

For more information on Alan Aderem, please visit the Pew Scholars in the Biomedical Sciences.

For more information on this oral history, please contact the Director of the Center for Oral History.

James V. Aidala began working with the Environmental Protection Agency (EPA) as a college intern in the Office of Pesticide Programs and returned as a policy analyst in the new Office of Pesticides and Toxic Substances (OPTS) after graduate school. From Aidala’s perspective, there was much uncertainty in the early years of Toxic Substances Control Act (TSCA), in part due to challenges with the law’s specificity regarding polychlorinated biphenyls and, later, asbestos and lead, and in part due to logistical, organizational, and legal difficulties in the early years of TSCA. After leaving the EPA Aidala then worked for the US Senate, the Congressional Research Service, and the House of Representatives, where he found that political interest was always more focused on pesticides than toxics. 

Jean Aitchison discusses how she first became involved in thesaurus development. Aitchison worked to complete three editions of English Electric Faceted Subject Classification for Engineering, between 1958 and 1961, and in March 1967 she began work on Thesaurofacet. She also worked to develop and improve the Bliss Association Classification system.

Thomas M. Aitchison began his career in information science at Courtaulds. After completing a Library Association correspondence course, he worked as a divisional librarian and information officer with the British Aircraft Corporation, and then as a member of the Aslib aircraft information group. He also developed a journal for the National Electronics Research Council. Later, he worked to mechanize Science Abstracts and organize the Direct Evaluation of Indexing Languages [DEVIL] project.

Thomas C. Alber grew up as an American in post World War II Japan and moved to Los Angeles in 1964. While attending the University of California, Santa Cruz Alber worked in Anthony L. Fink’s enzyme mechanism laboratory. As a graduate student, he did research at various laboratories including those at the University of California, San Diego, Berkeley, Oxford, and MIT. After earning his PhD, Alber started his postdoctoral research with Brian W. Matthews at the University of Oregon, before moving on to the University of Utah and then University of California, Berkeley. These moves allow him to reflect on the ways in which university science model differs at a range of institutions and varies from science in other nations.

Allison A. Aldridge attended the University of Illinois as an undergraduate, majoring in biology and taking many courses in chemistry. She then began a job in quality assurance at Hercules Aerospace, Inc. A friend encouraged her to seek an advanced degree, and she soon applied for and was accepted into the PhD program in chemistry at Loyola University in Chicago, Illinois. Degree in hand, Aldridge accepted a senior scientist job at Unilever, where she stayed for about three years. Over her career, she worked for a number of chemical companies: Abbott Laboratories, Mikart, Inc., Revogenex, Inc., and Speed Laboratory, Inc. Dr. Aldridge was also Chair of the Committee on Minority Affairs at the American Chemical Society.

Robert W. Allington had an interest in electronics from a young age. During his adolescence, Allington developed his skills in electronics through building radios, among other things, and by working as a television repairman. Later, he worked as an intern at the MIT Lincoln Laboratory on the SAGE air defense computer; near the end of the internship he was diagnosed with polio. Eventually he became an entrepreneur and founded Instrumentation Specialties Company (Isco), which focused on separation and environmental instrumentation.

John D. Altman was born and raised in Birmingham, Michigan. He had planned to attend medical school after obtaining an electrical engineering degree, but soon after beginning college he switched majors to chemistry, working in Michael Marletta’s toxicology laboratory. During his junior year he realized that he wanted to go into research, and decided to attend University of California, San Francisco for graduate school. His doctoral research in Irwin Kuntz’s biophysical chemistry laboratory involved using two-dimensional nuclear magnetic resonance spectroscopy to study protein structure. After postdocs at Stanford and Oxford University, Altman accepted a position at the Vaccine Center of Emory University. He talks about his administrative roles collaborations, funding, and his research on vaccines at the Southeastern Regional Center for Excellence in Biodefense. 

Hubert N. Alyea was an internationally-known popularizer of chemistry. His public demonstrations and academic lectures won him numerous awards and brought the beauty of chemistry to his students and interested laypeople alike. 

Neal Amundson worked as a process control engineer for Exxon, then for Standard Oil Company of New Jersey. In 1947, he became a professor in the University of Minnestoa’s chemical engineering department. By 1951, at just age thirty-five, Amundson held the positions of department chair and professor; he worked on heat transfer, chromatography, and adsorption. In 1977, Amundson left the University of Minnesota and became the Cullen Professor of Chemical Engineering at the University of Houston.

Gloria L. Anderson was born and raised in Altheimer, Arkansas. Anderson was always good in school, even skipping grades, yet she had to attend segregated schools. She obtained her undergraduate degree from Arkansas Agricultural, Mechanical, and Normal College (AM&N) and her PhD from the University of Chicago, studying fluorine using nuclear magnetic resonance (NMR) in Leon Stock’s lab. Anderson became associate professor and then chair of the department of chemistry at Morris Brown College, where she researched fluorine-19, and studied amantadines as potential antivirals. She held the Fuller E. Callaway Chair until she became Dean of Academic Affairs, and resumed the Chair after her return to teaching. In addition to her work for the college, Anderson served on the boards of Georgia and Atlanta Public Broadcasting, as well as many others, and she has been on an advisory committee for the U.S. Food and Drug Administration.

Paul J.  Anderson discovered a love of science as a child, which he nurtured through his degree in biology from the State University of New York, Stony Brook.  Bernard Dudock inspired Anderson to work in William Bauer’s labs, where he was encouraged to design experiments and met Francis Crick. Anderson entered an MD/PhD program at New York University. He specialized in rheumatology for his clinical years at Brigham and Women’s Hospital and worked at Stuart F.  Schlossman’s lab at the Dana-Farber Cancer Institute. He helped found the biotechnology company Apoptosis Technology. Anderson believes we will continue to learn more about the molecular mechanisms of apoptosis, which will allow us to interfere in the molecular cell death and to control diseases like cancer or organ rejection. 

Paul S. Anderson, shortly after graduate school accepted a position as a researcher with Merck, Sharp & Dohme Research Laboratories. Over the next thirty years, Anderson advanced through the ranks of Merck leadership, eventually becoming the vice president for chemistry at their West Point facilities. Then, in 1998, Anderson became the senior vice president of his department for the newly formed DuPont Pharmaceuticals.

Dr. Robert Armstrong discusses his early life in Nebraska and Arizona, his undergraduate and graduate studies at the Massachusetts Institute of Technology, and his career in industry. Armstrong recalls his work on rubber vulcanization and his pioneering research on radical polymerization at the U.S. Rubber Company, then later at the North American Rayon Company and the Celanese Corporation. Armstrong describes his duties as he progressed up the corporate ladder and also outlines his involvement with the establishment of the Research Triangle Institute.

Peter R. Arvan’s family background played an important role in his development, including his mother’s escape from Nazi Germany as a teenager. His decision to pursue science developed from his involvement in the National Science Foundation Summer Program in Biochemistry before his senior year in high school. Arvan joined Efraim Racker’s laboratory at Cornell University and then pursued his PhD at Yale University, working in the research laboratory of J. David Castle, and completed his residency at the University of North Carolina and Yale. Throughout the interview Arvan discussed the difficulties of scientific funding, the fortuitous events which have shaped his scientific thinking, and the difficulties inherent in the MD/PhD program.

In this joint interview, Donald Green and Willard Asbury recount the early years at Standard Oil Development Company and the influence of Frank Howard and Eger Murphree. The arc process is discussed as well as the level of assistance obtained from IG Farben. Green and Asbury recall the IG research organization; the wartime pressures during the development of GR-S; and the problems at the Baton Rouge plant. Asbury tells of his visit to Germany with the U.S. Strategic Bombing Survey and the political recriminations of the prewar cooperation between Standard Oil and IG Farben are recollected, as are visits to Germany in the 1930s and 1950s.

Charles M. Auer joined the EPA’s Office of Toxic Substances, before the Toxic Substances Control Act (TSCA) was passed, as an entry level chemist doing screening-level risk assessments. He was the first chair of the Structure Activity Team, which was responsible for developing structure activity relationship (SAR) analysis as a method for evaluating new chemicals. While it was clear to Auer that there was never any question that SAR satisfied the legal requirements of TSCA’s Section 4 premanufacture review, he witnessed several studies to verify the validity of SAR results. As a division director, Auer found it difficult to prioritize existing chemicals, primarily because Inventory Update Rules were not issued to collect changing hazard and exposure information. Auer believes that the Office has been very innovating, adjusting to emerging science on toxicity and applying TSCA while staying within its legal limits, and that the key to an effective toxics program is to be as dynamic as the chemical industry.